Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 28(5): 054005, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28029106

RESUMO

A comparison between graphene flakes and graphene oxide as filler in gelatin based systems for low-cost transient biodegradable energy storage applications has been carried out. The two bio-composites have been prepared and characterized by rheological measurements, cyclic voltammetry measurements, chronopotentiometry measurements and impedance spectroscopy. Differences in dielectric and mechanical properties have been correlated to the different structural organizations determinate by the hydrophobic/hydrophilic character of the used filler. In particular, the addition of the graphene oxide to the gelatin causes an increase in the elastic modulus with a parallel increase in the mechanical stability with time as compared to the composites obtained by adding graphene. Conversely, the surface capacitance is slightly increased by the graphene oxide addition compared to the pure gelatin sample. On the other hand, the introduction of the graphene flakes into the gelatin leads to a marked increase of the dielectric properties of the resulting bio-composite.

2.
Nanotechnology ; 28(5): 054003, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28008885

RESUMO

In this work the preparation of flexible polymeric films with controlled electrical conductivity, light transmission and surface wettability is reported. A drop casted graphene oxide thin film is photo-reduced at different levels by UV light or laser irradiation. Optical microscopy, IR spectroscopy, electrical characterization, Raman spectroscopy and static water contact angle measurements are used in order to characterize the effects of the various reduction methods. Correlations between the optical, electrical and structural properties are reported and compared to previous literature results. These correlations provide a useful tool for independently tuning the properties of these films for specific applications.

3.
Sci Rep ; 6: 34675, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703203

RESUMO

The hybrid perovskite methylammonium lead iodide CH3NH3PbI3 recently revealed its potential for the manufacturing of low-cost and efficient photovoltaic cells. However, many questions remain unanswered regarding the physics of the charge carrier conduction. In this respect, it is known that two structural phase transitions, occurring at temperatures near 160 and 310 K, could profoundly change the electronic properties of the photovoltaic material, but, up to now, a clear experimental evidence has not been reported. In order to shed light on this topic, the low-temperature phase transition of perovskite solar cells has been thoroughly investigated by using electric noise spectroscopy. Here it is shown that the dynamics of fluctuations detect the existence of a metastable state in a crossover region between the room-temperature tetragonal and the low-temperature orthorhombic phases of the perovskite compound. Besides the presence of a noise peak at this transition, a saturation of the fluctuation amplitudes is observed induced by the external DC current or, equivalently, by light exposure. This noise saturation effect is independent on temperature, and may represent an important aspect to consider for a detailed explanation of the mechanisms of operation in perovskite solar cells.

4.
Sci Rep ; 6: 29685, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27412097

RESUMO

A theoretical model, combining trapping/detrapping and recombination mechanisms, is formulated to explain the origin of random current fluctuations in silicon-based solar cells. In this framework, the comparison between dark and photo-induced noise allows the determination of important electronic parameters of the defect states. A detailed analysis of the electric noise, at different temperatures and for different illumination levels, is reported for crystalline silicon-based solar cells, in the pristine form and after artificial degradation with high energy protons. The evolution of the dominating defect properties is studied through noise spectroscopy.

5.
Appl Opt ; 34(4): 676-80, 1995 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20963168

RESUMO

Transient photoconductivity measurements have been performed in situ during plasma-enhanced chemical vapor deposition of amorphous hydrogenated silicon by a contactless method that uses the change of the microwave reflection after laser pulse illumination. Through the use of the interference pattern of the amplitude of the transients of microwave reflection during the layer growth, the actual thickness of the amorphous film can be determined. In the case of crystalline silicon substrates, the change in the light absorption in the substrate modified by the growth of the amorphous layer is measured directly. An example of the optimization of antireflective layers on crystalline silicon substrates is shown. A good agreement is found between the experimental data and calculations of optical reflection and transmission on the multilayer structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA