RESUMO
Abstract In the present study, the metabolite profiling of methanolic extract from aerial parts of Satureja khuzistanica Jamzad, as an endemic medicinal plant from Iran, was evaluated using HPLC-PDA-ESI. Then, the main compound from the extract was isolated and purified by using extensive chromatographic techniques. In addition, the structure of the isolated compounds was elucidated using 1D, 2D NMR, and MS spectrometry, upon which 22 compounds were identified. The antibacterial activity of diosmetin 7-rutinoside (6) and linarin (13) in combination with carvacrol as a major compound of the essential oil was tested against Pseudomonas aeruginosa and Staphylococcus aureus through disc diffusion and minimum inhibitory concentration methods. The results indicated that the linarin, when mixed with carvacrol as the main compounds in the essential oil of the plant, has a satisfactory activity against both Pseudomonas aeruginosa and Staphylococcus aureus with MIC values of 0.16 and 0.18 µg/mL, respectively. Further, the fractional inhibitory concentration (FIC) index indicated that this compound had synergism with carvacrol.
Assuntos
Plantas Medicinais/anatomia & histologia , Óleos Voláteis/análise , Lamiaceae/química , Satureja/classificação , Pseudomonas aeruginosa/isolamento & purificação , Análise Espectral/instrumentação , Testes de Sensibilidade Microbiana/instrumentação , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Bauhinia holophylla leaves, also known as "pata-de-vaca", are traditionally used in Brazil to treat diabetes. Although the hypoglycemic activity of this medicinal plant has already been described, the active compounds responsible for the hypoglycemic activity have not yet been identified. To rapidly obtain two fractions in large amounts compatible with further in vivo assay, the hydroalcoholic extract of B. holophylla leaves was fractionated by Vacuum Liquid Chromatography and then purified by medium pressure liquid chromatography combined with an in vivo Glucose Tolerance Test in diabetic mice. This approach resulted in the identification of eleven compounds (1-11), including an original non-cyanogenic cyanoglucoside derivative. The structures of the isolated compounds were elucidated by nuclear magnetic resonance and high-resolution mass spectrometry. One of the major compounds of the leaves, lithospermoside (3), exhibited strong hypoglycemic activity in diabetic mice at the doses of 10 and 20 mg/kg b.w. and prevents body weight loss. The proton nuclear magnetic resonance (1H NMR) quantification revealed that the hydroalcoholic leaves extract contained 1.7% of lithospermoside (3) and 3.1% of flavonoids. The NMR analysis also revealed the presence of a high amount of pinitol (4) (9.5%), a known compound possessing in vivo hypoglycemic activity. The hypoglycemic properties of the hydroalcoholic leaves extract and the traditional water infusion extracts of the leaves of B. holophylla seem thus to be the result of the activity of three unrelated classes of compounds. Such results support to some extent the traditional use of Bauhinia holophylla to treat diabetes.
Assuntos
Bauhinia/química , Hipoglicemiantes/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Acetonitrilas/isolamento & purificação , Acetonitrilas/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/tratamento farmacológico , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Teste de Tolerância a Glucose , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Hipoglicemiantes/farmacologia , Inositol/análogos & derivados , Inositol/isolamento & purificação , Inositol/farmacologia , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Extratos Vegetais/farmacologiaRESUMO
ABSTRACT Screening of medicinal plants from Iranian flora against human cancer cell-lines have shown that an hexane extract from roots of Salvia sahendica Boiss. & Buhse, Lamiaceae, is active against human cervical cancer (HeLa) and colorectal adenocarcinoma (Caco-2) cell-lines at the test concentration of 100 µg/ml (100% inhibition). Cytotoxicity of the extract was localized with the aid of HPLC-time-based activity profiling adapted to the tetrazolium colorimetric bioassay. Four abietane-type diterpenoids in active time-windows were identified as cytotoxic compounds namely: sahandone (1), sahandol (2), 12-deoxy-salvipisone (3) and sahandinone (4). Compound 1 showed the highest toxicity against HeLa cells (IC50 = 5.6 ± 0.1 µg/ml), which was comparable with betulinic acid (IC50 = 4.3 ± 1.2 µg/ml), the positive control. Compound 2 was active against the HeLa cells (IC50 = 8.9 ± 0.7 µg/ml) but not the Caco-2 cell-line. Compounds 1, 3 and 4 exhibited moderate activity (IC50 = 22.9-41.4 µg/ml) against the Caco-2 cells. This study reveals that the HeLa cells are more sensitive to all tested compounds than the Caco-2 cells. In silico molecular docking study showed a rigid binding of the compounds to tyrosine kinase pp60src, and proved their cytotoxic activity.
RESUMO
Five new diterpenes (1-5) and a megastigmane derivative (6) were isolated from the aerial parts of Euphorbia laurifolia, along with several known compounds. Their structures were elucidated by NMR, MS, and ECD and by chemical methods. A chemical proteomics drug affinity responsive target stability (DARTS) approach to investigate the lathyrane diterpene 1, laurifolioside, on its putative cellular target(s) was performed. Clathrin heavy chain 1, a protein mainly involved in selective uptake of proteins, viruses, and other macromolecules at the plasma membrane of cells, was identified as the major interaction partner of compound 1. The modulation of clathrin activity by 1 was studied through microscopy, molecular docking, and molecular dynamics studies, suggesting a new activity of lathyrane diterpenes in the modulation of trafficking pathways.