Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571798

RESUMO

Understanding the diet preferences and food selection of invasive species is crucial to better predict their impact on community structure and ecosystem functioning. Limnomysis benedeni, a Ponto-Caspian invasive mysid shrimp, is one of the most successful invaders in numerous European river and lake ecosystems. While existing studies suggest potentially strong trophic impact due to high predation pressure on native plankton communities, little is known of its food selectivity between phyto- and zooplankton, under different food concentrations. Here, we therefore investigated the feeding selectivity of L. benedeni on two commonly occurring prey organisms in freshwaters, the small rotifer zooplankton Brachionus calyciflorus together with the microphytoplankton Cryptomonas sp. present in increasing densities. Our results demonstrated a clear shift in food selection, with L. benedeni switching from B. calyciflorus to Cryptomonas sp. already when the two prey species were provided in equal biomasses. Different functional responses were observed for the two food types, indicating somewhat different foraging mechanisms for each food type. These findings provide experimental evidence on the feeding flexibility of invasive mysid shrimps and potential implications for trophic interactions in invaded ecosystems.

2.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994377

RESUMO

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Assuntos
Cianobactérias , Fitoplâncton , Lagos/microbiologia , Substâncias Húmicas , Eutrofização , Nutrientes , Fósforo/análise , China
3.
Commun Biol ; 6(1): 206, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810576

RESUMO

Phytoplankton forms the base of aquatic food webs and element cycling in diverse aquatic systems. The fate of phytoplankton-derived organic matter, however, often remains unresolved as it is controlled by complex, interlinked remineralization and sedimentation processes. We here investigate a rarely considered control mechanism on sinking organic matter fluxes: fungal parasites infecting phytoplankton. We demonstrate that bacterial colonization is promoted 3.5-fold on fungal-infected phytoplankton cells in comparison to non-infected cells in a cultured model pathosystem (diatom Synedra, fungal microparasite Zygophlyctis, and co-growing bacteria), and even ≥17-fold in field-sampled populations (Planktothrix, Synedra, and Fragilaria). Additional data obtained using the Synedra-Zygophlyctis model system reveals that fungal infections reduce the formation of aggregates. Moreover, carbon respiration is 2-fold higher and settling velocities are 11-48% lower for similar-sized fungal-infected vs. non-infected aggregates. Our data imply that parasites can effectively control the fate of phytoplankton-derived organic matter on a single-cell to single-aggregate scale, potentially enhancing remineralization and reducing sedimentation in freshwater and coastal systems.


Assuntos
Diatomáceas , Fitoplâncton , Cadeia Alimentar , Bactérias , Água Doce/microbiologia
4.
Mol Ecol ; 31(6): 1716-1734, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35028982

RESUMO

Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.


Assuntos
Ecossistema , Lagoas , Agricultura/métodos , Archaea/genética , Biodiversidade
5.
Trends Ecol Evol ; 37(5): 440-453, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35058082

RESUMO

The widespread salinisation of freshwater ecosystems poses a major threat to the biodiversity, functioning, and services that they provide. Human activities promote freshwater salinisation through multiple drivers (e.g., agriculture, resource extraction, urbanisation) that are amplified by climate change. Due to its complexity, we are still far from fully understanding the ecological and evolutionary consequences of freshwater salinisation. Here, we assess current research gaps and present a research agenda to guide future studies. We identified different gaps in taxonomic groups, levels of biological organisation, and geographic regions. We suggest focusing on global- and landscape-scale processes, functional approaches, genetic and molecular levels, and eco-evolutionary dynamics as key future avenues to predict the consequences of freshwater salinisation for ecosystems and human societies.


Assuntos
Ecossistema , Água Doce , Biodiversidade , Evolução Biológica , Mudança Climática , Humanos
6.
J Plankton Res ; 43(6): 945-956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858079

RESUMO

The study of invasive species often focuses on regions of recent introduction rather than native habitats. Understanding an invasive species in its natural environment, however, can provide important insights regarding the long-term outcome of invasions. In this study we investigated the diet of the invasive spiny water flea, Bythotrephes longimanus, in two Austrian perialpine lakes, where it is native. The gut contents of wild-caught Bythotrephes individuals were estimated by quantitative polymerase chain reaction, targeting species-specific fragments of the barcoding region of the cytochrome c oxidase I gene of potential prey. The observed prey spectrum of Bythotrephes in the study lakes consisted primarily of Eudiaptomus gracilis and Diaphanosoma brachyurum. The Daphnia longispina complex, Leptodora kindtii and Mesocyclops leuckarti also contributed to the diet. Results indicate that Bythotrephes is a generalist feeder with a preference for epilimnetic prey.

7.
Sci Rep ; 11(1): 23478, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873189

RESUMO

Light pollution is an environmental stressor of global extent that is growing exponentially in area and intensity. Artificial skyglow, a form of light pollution with large range, is hypothesized to have environmental impact at ecosystem level. However, testing the impact of skyglow at large scales and in a controlled fashion under in situ conditions has remained elusive so far. Here we present the first experimental setup to mimic skyglow at ecosystem level outdoors in an aquatic environment. Spatially diffuse and homogeneous surface illumination that is adjustable between 0.01 and 10 lx, resembling rural to urban skyglow levels, was achieved with white light-emitting diodes at a large-scale lake enclosure facility. The illumination system was enabled by optical modeling with Monte-Carlo raytracing and validated by measurements. Our method can be adapted to other outdoor and indoor skyglow experiments, urgently needed to understand the impact of skyglow on ecosystems.

8.
Glob Chang Biol ; 27(19): 4615-4629, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34241940

RESUMO

Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed-a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs-is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5-53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.


Assuntos
Lagos , Fitoplâncton , Clorofila , Clorofila A , Estações do Ano
9.
Sci Rep ; 10(1): 20444, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235278

RESUMO

Phaeocystis pouchetii (Hariot) Lagerheim, 1893 regularly dominates phytoplankton blooms in higher latitudes spanning from the English Channel to the Arctic. Through zooplankton grazing and microbial activity, it is considered to be a key resource for the entire marine food web, but the actual relevance of biomass transfer to higher trophic levels is still under discussion. Cell physiology and algal nutritional state are suggested to be major factors controlling the observed variability in zooplankton grazing. However, no data have so far yielded insights into the metabolic state of Phaeocystis populations that would allow testing this hypothesis. Therefore, endometabolic markers of different growth phases were determined in laboratory batch cultures using comparative metabolomics and quantified in different phytoplankton blooms in the field. Metabolites, produced during exponential, early and late stationary growth of P. pouchetii, were profiled using gas chromatography-mass spectrometry. Then, metabolites were characterized that correlate with the growth phases using multivariate statistical analysis. Free amino acids characterized the exponential growth, whereas the early stationary phase was correlated with sugar alcohols, mono- and disaccharides. In the late stationary phase, free fatty acids, sterols and terpenes increased. These marker metabolites were then traced in Phaeocystis blooms during a cruise in the Barents Sea and North Norwegian fjords. About 50 endometabolites of P. pouchetii were detected in natural phytoplankton communities. Mannitol, scyllo-inositol, 24-methylcholesta-5,22-dien-3ß-ol, and several free fatty acids were characteristic for Phaeocystis-dominated blooms but showed variability between them. Distinct metabolic profiles were detected in the nutrient-depleted community in the inner Porsangerfjord (< 0.5 µM NO3-, < 0.1 µM PO 4 3- ), with high relative amounts of free mono- and disaccharides indicative for a limited culture. This study thereby shows how the variable physiology of phytoplankton can alter the metabolic landscape of entire plankton communities.


Assuntos
Haptófitas/crescimento & desenvolvimento , Metabolômica/métodos , Fitoplâncton/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Haptófitas/metabolismo , Fitoplâncton/metabolismo , Esteróis/análise , Álcoois Açúcares/análise , Terpenos/análise
11.
Environ Microbiol ; 19(10): 3802-3822, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28618196

RESUMO

Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/patogenicidade , Micoses/microbiologia , Fitoplâncton/microbiologia , Animais , Evolução Biológica , Ecologia , Ecossistema , Microbiologia Ambiental , Cadeia Alimentar , Especificidade de Hospedeiro , Filogenia
12.
Glob Chang Biol ; 23(4): 1448-1462, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27664076

RESUMO

Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem-scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear-water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high-frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for >4 weeks even though thermal stratification re-established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm-induced effects, such as inputs of terrestrial materials by increased catchment run-off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear-water lakes.


Assuntos
Mudança Climática , Ecossistema , Lagos , Teorema de Bayes , Estações do Ano
13.
Mol Ecol ; 25(21): 5585-5602, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27662431

RESUMO

In order to characterize copepod feeding in relation to microbial plankton community dynamics, we combined metabarcoding and metabolome analyses during a 22-day seawater mesocosm experiment. Nutrient amendment of mesocosms promoted the development of haptophyte (Phaeocystis pouchetii)- and diatom (Skeletonema marinoi)-dominated plankton communities in mesocosms, in which Calanus sp. copepods were incubated for 24 h in flow-through chambers to allow access to prey particles (<500 µm). Copepods and mesocosm water sampled six times spanning the experiment were analysed using metabarcoding, while intracellular metabolite profiles of mesocosm plankton communities were generated for all experimental days. Taxon-specific metabarcoding ratios (ratio of consumed prey to available prey in the surrounding seawater) revealed diverse and dynamic copepod feeding selection, with positive selection on large diatoms, heterotrophic nanoflagellates and fungi, while smaller phytoplankton, including P. pouchetii, were passively consumed or even negatively selected according to our indicator. Our analysis of the relationship between Calanus grazing ratios and intracellular metabolite profiles indicates the importance of carbohydrates and lipids in plankton succession and copepod-prey interactions. This molecular characterization of Calanus sp. grazing therefore provides new evidence for selective feeding in mixed plankton assemblages and corroborates previous findings that copepod grazing may be coupled to the developmental and metabolic stage of the entire prey community rather than to individual prey abundances.


Assuntos
Copépodes/fisiologia , Código de Barras de DNA Taxonômico , Diatomáceas , Metaboloma , Fitoplâncton , Plâncton , Animais , Carboidratos/análise , Copépodes/genética , Comportamento Alimentar , Lipídeos/análise , Água do Mar
14.
Sci Rep ; 6: 29286, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27404551

RESUMO

Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.


Assuntos
Luz , Fotossíntese , Plâncton/fisiologia , Animais , Processos Autotróficos , Biomassa , Ecossistema , Processos Heterotróficos , Mar Mediterrâneo , Especificidade de Órgãos , Comportamento Predatório
15.
Limnol Oceanogr ; 60(2): 360-374, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26074626

RESUMO

A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs.

16.
Front Microbiol ; 6: 1427, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733971

RESUMO

Gelatinous zooplankton, such as ctenophores and jellyfish, are important components of marine and brackish ecosystems and play critical roles in aquatic biogeochemistry. As voracious predators of plankton, ctenophores have key positions in aquatic food webs and are often successful invaders when introduced to new areas. Gelatinous zooplankton have strong impacts on ecosystem services, particularly in coastal environments. However, little is known about the factors responsible for regulating population dynamics of gelatinous organisms, including biological interactions that may contribute to bloom demise. Ctenophores are known to contain specific bacterial communities and a variety of invertebrate parasites and symbionts; however, no previous studies have examined the presence of viruses in these organisms. Building upon recent studies demonstrating a diversity of single-stranded DNA viruses that encode a replication initiator protein (Rep) in aquatic invertebrates, this study explored the presence of circular, Rep-encoding single-stranded DNA (CRESS-DNA) viruses in the ctenophores Mnemiopsis leidyi and Beroe ovata collected from the Skidaway River Estuary and Savannah River in Georgia, USA. Using rolling circle amplification followed by restriction enzyme digestion, this study provides the first evidence of viruses in ctenophores. Investigation of four CRESS-DNA viruses over an 8-month period using PCR demonstrated temporal trends in viral prevalence and indicated that some of the viruses may persist in ctenophore populations throughout the year. Although future work needs to examine the ecological roles of these ctenophore-associated viruses, this study indicates that viral infection may play a role in population dynamics of gelatinous zooplankton.

17.
PLoS One ; 9(11): e112522, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383890

RESUMO

Polyunsaturated aldehydes (PUAs) are released by several diatom species during predation. Besides other attributed activities, these oxylipins can interfere with the reproduction of copepods, important predators of diatoms. While intensive research has been carried out to document the effects of PUAs on copepod reproduction, little is known about the underlying mechanistic aspects of PUA action. Especially PUA uptake and accumulation in copepods has not been addressed to date. To investigate how PUAs are taken up and interfere with the reproduction in copepods we developed a fluorescent probe containing the α,ß,γ,δ-unsaturated aldehyde structure element that is essential for the activity of PUAs as well as a set of control probes. We developed incubation and monitoring procedures for adult females of the calanoid copepod Acartia tonsa and show that the PUA derived fluorescent molecular probe selectively accumulates in the gonads of this copepod. In contrast, a saturated aldehyde derived probe of an inactive parent molecule was enriched in the lipid sac. This leads to a model for PUAs' teratogenic mode of action involving accumulation and covalent interaction with nucleophilic moieties in the copepod reproductive tissue. The teratogenic effect of PUAs can therefore be explained by a selective targeting of the molecules into the reproductive tissue of the herbivores, while more lipophilic but otherwise strongly related structures end up in lipid bodies.


Assuntos
Aldeídos/química , Aldeídos/farmacocinética , Copépodes/fisiologia , Gônadas/efeitos dos fármacos , Aldeídos/farmacologia , Animais , Copépodes/efeitos dos fármacos , Feminino , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Especificidade de Órgãos , Rodaminas/farmacocinética , Teratogênicos/química , Teratogênicos/farmacocinética , Teratogênicos/farmacologia
18.
PLoS One ; 9(4): e94388, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24721992

RESUMO

We studied the effects of future climate change scenarios on plankton communities of a Norwegian fjord using a mesocosm approach. After the spring bloom, natural plankton were enclosed and treated in duplicates with inorganic nutrients elevated to pre-bloom conditions (N, P, Si; eutrophication), lowering of 0.4 pH units (acidification), and rising 3°C temperature (warming). All nutrient-amended treatments resulted in phytoplankton blooms dominated by chain-forming diatoms, and reached 13-16 µg chlorophyll (chl) a l-1. In the control mesocosms, chl a remained below 1 µg l-1. Acidification and warming had contrasting effects on the phenology and bloom-dynamics of autotrophic and heterotrophic microplankton. Bacillariophyceae, prymnesiophyceae, cryptophyta, and Protoperidinium spp. peaked earlier at higher temperature and lower pH. Chlorophyta showed lower peak abundances with acidification, but higher peak abundances with increased temperature. The peak magnitude of autotrophic dinophyceae and ciliates was, on the other hand, lowered with combined warming and acidification. Over time, the plankton communities shifted from autotrophic phytoplankton blooms to a more heterotrophic system in all mesocosms, especially in the control unaltered mesocosms. The development of mass balance and proportion of heterotrophic/autotrophic biomass predict a shift towards a more autotrophic community and less-efficient food web transfer when temperature, nutrients and acidification are combined in a future climate-change scenario. We suggest that this result may be related to a lower food quality for microzooplankton under acidification and warming scenarios and to an increase of catabolic processes compared to anabolic ones at higher temperatures.


Assuntos
Cilióforos/fisiologia , Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Modelos Estatísticos , Fitoplâncton/fisiologia , Biomassa , Clorofila/biossíntese , Clorofila A , Clima , Mudança Climática , Eutrofização , Cadeia Alimentar , Previsões , Processos Heterotróficos , Concentração de Íons de Hidrogênio , Noruega , Temperatura
19.
Mol Ecol ; 23(15): 3870-6, 2014 08.
Artigo em Inglês | MEDLINE | ID: mdl-24112432

RESUMO

Herbivory in corals, especially for symbiotic species, remains controversial. To investigate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodomonas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end-point PCR amplification of algae-specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders.


Assuntos
Antozoários/fisiologia , Cadeia Alimentar , Herbivoria , Microalgas/genética , Animais , RNA Ribossômico 18S/análise , Análise de Sequência de DNA , Simbiose
20.
Mar Biol ; 156(3): 253-259, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-32921814

RESUMO

Quantification of feeding rates and selectivity of zooplankton is vital for understanding the mechanisms structuring marine ecosystems. However, methodological limitations have made many of these studies difficult. Recently, molecular based methods have demonstrated that DNA from prey species can be used to identify zooplankton gut contents, and further, quantitative gut content estimates by quantitative PCR (qPCR) assays targeted to the 18S rRNA gene have been used to estimate feeding rates in appendicularians and copepods. However, while standard single primer based qPCR assays were quantitative for the filter feeding appendicularian Oikopleura dioica, feeding rates were consistently underestimated in the copepod Calanus finmarchicus. In this study, we test the hypothesis that prey DNA is rapidly digested after ingestion by copepods and describe a qPCR-based assay, differential length amplification qPCR (dla-qPCR), to account for DNA digestion. The assay utilizes multiple primer sets that amplify different sized fragments of the prey 18S rRNA gene and, based on the differential amplification of these fragments, the degree of digestion is estimated and corrected for. Application of this approach to C. finmarchicus fed Rhodomonas marina significantly improved quantitative feeding estimates compared to standard qPCR. The development of dla-qPCR represents a significant advancement towards a quantitative method for assessing in situ copepod feeding rates without involving cultivation-based manipulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...