Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (203)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251787

RESUMO

Zebrafish is an intriguing model organism known for its remarkable cardiac regeneration capacity. Studying the contracting heart in vivo is essential for gaining insights into structural and functional changes in response to injuries. However, obtaining high-resolution and high-speed 4-dimensional (4D, 3D spatial + 1D temporal) images of the zebrafish heart to assess cardiac architecture and contractility remains challenging. In this context, an in-house light-sheet microscope (LSM) and customized computational analysis are used to overcome these technical limitations. This strategy, involving LSM system construction, retrospective synchronization, single cell tracking, and user-directed analysis, enables one to investigate the micro-structure and contractile function across the entire heart at the single-cell resolution in the transgenic Tg(myl7:nucGFP) zebrafish larvae. Additionally, we are able to further incorporate microinjection of small molecule compounds to induce cardiac injury in a precise and controlled manner. Overall, this framework allows one to track physiological and pathophysiological changes, as well as the regional mechanics at the single-cell level during cardiac morphogenesis and regeneration.


Assuntos
Contração Muscular , Peixe-Zebra , Animais , Estudos Retrospectivos , Animais Geneticamente Modificados , Rastreamento de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA