Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12485, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127725

RESUMO

The pathways and robust deregulated gene signatures involved in AML chemo-resistance are not fully understood. Multiple subgroups of AMLs which are under treatment of various regimens seem to have similar regulatory gene(s) or pathway(s) related to their chemo-resistance phenotype. In this study using gene set enrichment approach, deregulated genes and pathways associated with relapse after chemotherapy were investigated in AML samples. Five AML libraries compiled from GEO and ArrayExpress repositories were used to identify significantly differentially expressed genes between chemo-resistance and chemo-sensitive groups. Functional and pathway enrichment analysis of differentially expressed genes was performed to assess molecular mechanisms related to AML chemotherapeutic resistance. A total of 34 genes selected to be differentially expressed in the chemo-resistance compared to the chemo-sensitive group. Among the genes selected, c-Jun, AKT3, ARAP3, GABBR1, PELI2 and SORT1 are involved in neurotrophin, estrogen, cAMP and Toll-like receptor signaling pathways. All these pathways are located upstream and regulate JNK signaling pathway which functions as a key regulator of cellular apoptosis. Our expression data are in favor of suppression of JNK pathway, which could induce pro-apoptotic gene expression as well as down regulation of survival factors, introducing this pathway as a key regulator of drug-resistance development in AML.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Dano ao DNA/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/patologia , Sistema de Sinalização das MAP Quinases/genética , Recidiva Local de Neoplasia/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...