Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 42015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25719210

RESUMO

Loss of polarity correlates with progression of epithelial cancers, but how plasma membrane misorganization drives oncogenic transcriptional events remains unclear. The polarity regulators of the Drosophila Scribble (Scrib) module are potent tumor suppressors and provide a model for mechanistic investigation. RNA profiling of Scrib mutant tumors reveals multiple signatures of neoplasia, including altered metabolism and dedifferentiation. Prominent among these is upregulation of cytokine-like Unpaired (Upd) ligands, which drive tumor overgrowth. We identified a polarity-responsive enhancer in upd3, which is activated in a coincident manner by both JNK-dependent Fos and aPKC-mediated Yki transcription. This enhancer, and Scrib mutant overgrowth in general, are also sensitive to activity of the Polycomb Group (PcG), suggesting that PcG attenuation upon polarity loss potentiates select targets for activation by JNK and Yki. Our results link epithelial organization to signaling and epigenetic regulators that control tissue repair programs, and provide insight into why epithelial polarity is tumor-suppressive.


Assuntos
Polaridade Celular/genética , Transformação Celular Neoplásica/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana , Microscopia de Fluorescência , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Proteína Quinase C/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
2.
PLoS One ; 9(2): e87647, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24504085

RESUMO

Forkhead box (FOX) transcription factors regulate a wide variety of cellular functions in higher eukaryotes, including cell cycle control and developmental regulation. In Saccharomyces cerevisiae, Forkhead proteins Fkh1 and Fkh2 perform analogous functions, regulating genes involved in cell cycle control, while also regulating mating-type silencing and switching involved in gamete development. Recently, we revealed a novel role for Fkh1 and Fkh2 in the regulation of replication origin initiation timing, which, like donor preference in mating-type switching, appears to involve long-range chromosomal interactions, suggesting roles for Fkh1 and Fkh2 in chromatin architecture and organization. To elucidate how Fkh1 and Fkh2 regulate their target DNA elements and potentially regulate the spatial organization of the genome, we undertook a genome-wide analysis of Fkh1 and Fkh2 chromatin binding by ChIP-chip using tiling DNA microarrays. Our results confirm and extend previous findings showing that Fkh1 and Fkh2 control the expression of cell cycle-regulated genes. In addition, the data reveal hundreds of novel loci that bind Fkh1 only and exhibit a distinct chromatin structure from loci that bind both Fkh1 and Fkh2. The findings also show that Fkh1 plays the predominant role in the regulation of a subset of replication origins that initiate replication early, and that Fkh1/2 binding to these loci is cell cycle-regulated. Finally, we demonstrate that Fkh1 and Fkh2 bind proximally to a variety of genetic elements, including centromeres and Pol III-transcribed snoRNAs and tRNAs, greatly expanding their potential repertoire of functional targets, consistent with their recently suggested role in mediating the spatial organization of the genome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Cromossomos Fúngicos , Fatores de Transcrição Forkhead/metabolismo , Genoma Fúngico , Sequências Reguladoras de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Regulação Fúngica da Expressão Gênica , Nucleossomos/metabolismo , Ligação Proteica , Origem de Replicação
3.
J Cell Biol ; 201(3): 373-83, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23629964

RESUMO

DNA damage slows DNA synthesis at replication forks; however, the mechanisms remain unclear. Cdc7 kinase is required for replication origin activation, is a target of the intra-S checkpoint, and is implicated in the response to replication fork stress. Remarkably, we found that replication forks proceed more rapidly in cells lacking Cdc7 function than in wild-type cells. We traced this effect to reduced origin firing, which results in fewer replication forks and a consequent decrease in Rad53 checkpoint signaling. Depletion of Orc1, which acts in origin firing differently than Cdc7, had similar effects as Cdc7 depletion, consistent with decreased origin firing being the source of these defects. In contrast, mec1-100 cells, which initiate excess origins and also are deficient in checkpoint activation, showed slower fork progression, suggesting the number of active forks influences their rate, perhaps as a result of competition for limiting factors.


Assuntos
Replicação do DNA , Origem de Replicação , Saccharomyces cerevisiae/genética , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Dano ao DNA , DNA Fúngico/biossíntese , DNA Fúngico/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Langmuir ; 23(17): 8655-8, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17628083

RESUMO

In this letter, we report the observations of specific pattern formation from the evaporation of aqueous droplets containing motile and nonmotile bacteria. We found that when motile bacteria were present the droplet evaporated into disclike patterned deposits of bacteria. However, when the bacteria were made nonmotile by treatment with liquid nitrogen, the droplet evaporated into ringlike deposits. We also observed that bacteria with higher motility produced more uniformly deposited disclike patterns. Furthermore, we propose a model with numerical simulations to explain the mechanism of formation of these patterns. The model is based on the advective fluid flow from the center of the droplet toward the edge due to enhanced evaporation from the edge of the pinned droplet in comparison to that from the free surface. For the case of motile bacteria, we have added another velocity parameter toward the axis of the droplet and directed against the fluid flow in order to account for the disclike pattern formation. The numerical simulations match the experimental observations well. The present work, by qualitative and quantitative understanding of the evaporation of bacteria droplets, demonstrates that the inherent bacterial motility is primarily responsible for the formation of these differential patterns.


Assuntos
Escherichia coli , Lactobacillus , Escherichia coli/fisiologia , Lactobacillus/fisiologia , Movimento , Soluções , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA