Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405940

RESUMO

Although DNA methylation primarily represses transposable elements (TEs) in plants, it also represses select endosperm and pollen genes. These genes, or their cis-regulatory elements, are methylated in plant body tissues but are demethylated by DNA glycosylases (DNGs) in endosperm and pollen, enabling their transcription. Activity of either one of two DNGs, MDR1 or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen segregating mutations in both genes, we identified 58 candidate DNG target genes, whose expression is strongly decreased in double mutant pollen (124-fold decrease on average). These genes account for 11.1% of the wild-type pollen polyadenylated transcriptome, but they are silent or barely detectable in the plant body. They are unusual in their tendency to lack introns but even more so in their having TE-like methylation in their coding DNA sequence. Moreover, they are strongly enriched for predicted functions in cell wall modification. While some may support development of the pollen grain cell wall, expansins and pectinases in this set of genes suggest a function in cell wall loosening to support the rapid tip growth characteristic of pollen tubes as they carry the sperm cells through maternal apoplast and extracellular matrix of the pistil. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with potential for extremely high expression in pollen but constitutive silencing elsewhere.

2.
Nat Protoc ; 18(11): 3512-3533, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783945

RESUMO

RNA-sequencing (RNA-seq) provides invaluable knowledge on developmental pathways and the effects of mutant phenotypes. Plant reproductive cells have traditionally been difficult to isolate for genomics because they are rare and often deeply embedded within somatic tissues. Here, we present a protocol to isolate single maize meiocytes and pollen grains for RNA-seq. We discuss how to identify and isolate each sample type under a microscope, prepare RNA-seq libraries and analyze the data. This technique has several advantages over alternative methods, combining the ability to target specific rare cell types while resolving cell-to-cell heterogeneity with single-cell RNA-seq. The technique is compatible with minute amounts of starting material (e.g., a single anther), making it possible to collect dense time courses. Furthermore, developmentally synchronized anthers are saved for microscopy, allowing staging to be performed in parallel with expression analysis. Up to 200 cells can be collected in 4-5 h by someone proficient in tissue dissection, and library preparation can be completed in 2 d by researchers experienced in molecular biology and genomics. This protocol will facilitate research on plant reproduction, providing insights critical to plant breeding, genetics and agriculture.


Assuntos
Análise da Expressão Gênica de Célula Única , Zea mays , Zea mays/genética , Zea mays/metabolismo , Genômica , Pólen/genética , Pólen/metabolismo , Fenótipo
3.
Curr Opin Plant Biol ; 75: 102416, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37441836

RESUMO

Flowering plants alternate between two multicellular generations: the diploid sporophyte and haploid gametophyte. Despite its small size, the gametophyte has significant impacts on plant genetics, evolution, and breeding. Each male pollen grain and female embryo sac is a multicellular organism with independent gene expression, a functioning metabolism, and specialized cell types. In this review, we describe recent progress in understanding the process in which the haploid genome takes over expression from its diploid parent - the sporophyte-to-gametophyte transition. The focus is on pollen, but similar concepts may also apply to the female gametophyte. Technological advances in single-cell genomics offer the opportunity to characterize haploid gene expression in unprecedented detail, positioning the field to make rapid progress.


Assuntos
Células Germinativas Vegetais , Melhoramento Vegetal , Haploidia , Pólen/genética , Óvulo Vegetal
4.
Science ; 375(6579): 424-429, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35084965

RESUMO

Flowering plants alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. Pollen actively transcribes its haploid genome, providing phenotypic diversity even among pollen grains from a single plant. In this study, we used allele-specific RNA sequencing of single pollen precursors to follow the shift to haploid expression in maize pollen. We observed widespread biallelic expression for 11 days after meiosis, indicating that transcripts synthesized by the diploid sporophyte persist long into the haploid phase. Subsequently, there was a rapid and global conversion to monoallelic expression at pollen mitosis I, driven by active new transcription from the haploid genome. Genes showed evidence of increased purifying selection if they were expressed after (but not before) pollen mitosis I. This work establishes the timing during which haploid selection may act in pollen.


Assuntos
Genoma de Planta , Células Germinativas Vegetais/fisiologia , Pólen/genética , Zea mays/genética , Diploide , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Haploidia , Meiose , Mitose , Pólen/crescimento & desenvolvimento , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA-Seq , Transcrição Gênica , Zea mays/crescimento & desenvolvimento
5.
Science ; 364(6435): 52-56, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948545

RESUMO

In multicellular organisms, the entry into meiosis is a complex process characterized by increasing meiotic specialization. Using single-cell RNA sequencing, we reconstructed the developmental program into maize male meiosis. A smooth continuum of expression stages before meiosis was followed by a two-step transcriptome reorganization in leptotene, during which 26.7% of transcripts changed in abundance by twofold or more. Analysis of cell-cycle gene expression indicated that nearly all pregerminal cells proliferate, eliminating a stem-cell model to generate meiotic cells. Mutants defective in somatic differentiation or meiotic commitment expressed transcripts normally present in early meiosis after a delay; thus, the germinal transcriptional program is cell autonomous and can proceed despite meiotic failure.


Assuntos
Regulação da Expressão Gênica de Plantas , Meiose/genética , Pólen/citologia , Pólen/crescimento & desenvolvimento , Zea mays/citologia , Zea mays/crescimento & desenvolvimento , Diferenciação Celular , Mitose/genética , Mutação , Pólen/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica , Transcriptoma , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...