Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 80(4): 747-58, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21791575

RESUMO

The role of α(1)-adrenergic receptors (α(1)ARs) in cognition and mood is controversial, probably as a result of past use of nonselective agents. α(1A)AR activation was recently shown to increase neurogenesis, which is linked to cognition and mood. We studied the effects of long-term α(1A)AR stimulation using transgenic mice engineered to express a constitutively active mutant (CAM) form of the α(1A)AR. CAM-α(1A)AR mice showed enhancements in several behavioral models of learning and memory. In contrast, mice that have the α(1A)AR gene knocked out displayed poor cognitive function. Hippocampal brain slices from CAM-α(1A)AR mice demonstrated increased basal synaptic transmission, paired-pulse facilitation, and long-term potentiation compared with wild-type (WT) mice. WT mice treated with the α(1A)AR-selective agonist cirazoline also showed enhanced cognitive functions. In addition, CAM-α(1A)AR mice exhibited antidepressant and less anxious phenotypes in several behavioral tests compared with WT mice. Furthermore, the lifespan of CAM-α(1A)AR mice was 10% longer than that of WT mice. Our results suggest that long-term α(1A)AR stimulation improves synaptic plasticity, cognitive function, mood, and longevity. This may afford a potential therapeutic target for counteracting the decline in cognitive function and mood associated with aging and neurological disorders.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Afeto/fisiologia , Cognição/fisiologia , Longevidade/fisiologia , Plasticidade Neuronal/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Afeto/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Receptores Adrenérgicos alfa 1/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
2.
Mol Pharmacol ; 75(5): 1222-30, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19225179

RESUMO

Activation of G protein-coupled alpha(2) adrenergic receptors (ARs) inhibits epileptiform activity in the hippocampal CA3 region. The specific mechanism underlying this action is unclear. This study investigated which subtype(s) of alpha(2)ARs and G proteins (Galpha(o) or Galpha(i)) are involved in this response using recordings of mouse hippocampal CA3 epileptiform bursts. Application of epinephrine (EPI) or norepinephrine (NE) reduced the frequency of bursts in a concentration-dependent manner: (-)EPI > (-)NE >>> (+)NE. To identify the alpha(2)AR subtype involved, equilibrium dissociation constants (pK(b)) were determined for the selective alphaAR antagonists atipamezole (8.79), rauwolscine (7.75), 2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride (WB-4101; 6.87), and prazosin (5.71). Calculated pK(b) values correlated best with affinities determined previously for the mouse alpha(2A)AR subtype (r = 0.98, slope = 1.07). Furthermore, the inhibitory effects of EPI were lost in hippocampal slices from alpha(2A)AR-but not alpha(2C)AR-knockout mice. Pretreatment with pertussis toxin also reduced the EPI-mediated inhibition of epileptiform bursts. Finally, using knock-in mice with point mutations that disrupt regulator of G protein signaling (RGS) binding to Galpha subunits to enhance signaling by that G protein, the EPI-mediated inhibition of bursts was significantly more potent in slices from RGS-insensitive Galpha(o)(G184S) heterozygous (Galpha(o)+/GS) mice compared with either Galpha(i2)(G184S) heterozygous (Galpha(i2)+/GS) or control mice (EC(50) = 2.5 versus 19 and 23 nM, respectively). Together, these findings indicate that the inhibitory effect of EPI on hippocampal CA3 epileptiform activity uses an alpha(2A)AR/Galpha(o) protein-mediated pathway under strong inhibitory control by RGS proteins. This suggests a possible role for RGS inhibitors or selective alpha(2A)AR agonists as a novel antiepileptic drug therapy.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Hipocampo/efeitos dos fármacos , Proteínas RGS/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 2 , Animais , Epinefrina/farmacologia , Feminino , Hipocampo/fisiologia , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Norepinefrina/farmacologia , Oximetazolina/farmacologia , Toxina Pertussis/farmacologia
3.
Mol Pharmacol ; 71(6): 1572-81, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17341653

RESUMO

Norepinephrine has potent antiepileptic properties, the pharmacology of which is unclear. Under conditions in which GABAergic inhibition is blocked, norepinephrine reduces hippocampal cornu ammonis 3 (CA3) epileptiform activity through alpha(2) adrenergic receptor (AR) activation on pyramidal cells. In this study, we investigated which alpha(2)AR subtype(s) mediates this effect. First, alpha(2)AR genomic expression patterns of 25 rat CA3 pyramidal cells were determined using real-time single-cell reverse transcription-polymerase chain reaction, demonstrating that 12 cells expressed alpha(2A)AR transcript; 3 of the 12 cells additionally expressed mRNA for alpha(2C)AR subtype and no cells possessing alpha(2B)AR mRNA. Hippocampal CA3 epileptiform activity was then examined using field potential recordings in brain slices. The selective alphaAR agonist 6-fluoronorepinephrine caused a reduction of CA3 epileptiform activity, as measured by decreased frequency of spontaneous epileptiform bursts. In the presence of betaAR blockade, concentration-response curves for AR agonists suggest that an alpha(2)AR mediates this response, as the rank order of potency was 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK-14304) >or= epinephrine >6-fluoronorepinephrine > norepinephrine >>> phenylephrine. Finally, equilibrium dissociation constants (K(b)) of selective alphaAR antagonists were functionally determined to confirm the specific alpha(2)AR subtype inhibiting CA3 epileptiform activity. Apparent K(b) values calculated for atipamezole (1.7 nM), MK-912 (4.8 nM), BRL-44408 (15 nM), yohimbine (63 nM), ARC-239 (540 nM), prazosin (4900 nM), and terazosin (5000 nM) correlated best with affinities previously determined for the alpha(2A)AR subtype (r = 0.99, slope = 1.0). These results suggest that, under conditions of impaired GABAergic inhibition, activation of alpha(2A)ARs is primarily responsible for the antiepileptic actions of norepinephrine in the rat hippocampal CA3 region.


Assuntos
Agonistas Adrenérgicos/uso terapêutico , Epilepsia/prevenção & controle , Hipocampo/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Adrenérgicos/administração & dosagem , Agonistas Adrenérgicos/farmacologia , Animais , Catecolaminas/farmacologia , Epinefrina/farmacologia , Feminino , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 2/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...