Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(5): e0171123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37747883

RESUMO

IMPORTANCE: Ticks are the number one vector of pathogens for livestock worldwide and for humans in the United States. The biology of tick transmission is an understudied area. Understanding this critical interaction could provide opportunities to affect the course of disease spread. In this study, we examined the zoonotic tick-borne agent Anaplasma phagocytophilum and identified a secreted protein, AteA, which is expressed in a tick-specific manner. These secreted proteins, termed effectors, are the first proteins to interact with the host environment. AteA is essential for survival in ticks and appears to interact with cortical actin. Most effector proteins are studied in the context of the mammalian host; however, understanding how this unique set of proteins affects tick transmission is critical to developing interventions.


Assuntos
Anaplasma phagocytophilum , Ixodes , Animais , Humanos , Anaplasma phagocytophilum/genética , Mamíferos
2.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798287

RESUMO

Pathogens must adapt to disparate environments in permissive host species, a feat that is especially pronounced for vector-borne microbes, which transition between vertebrate hosts and arthropod vectors to complete their lifecycles. Most knowledge about arthropod-vectored bacterial pathogens centers on their life in the mammalian host, where disease occurs. However, disease outbreaks are driven by the arthropod vectors. Adapting to the arthropod is critical for obligate intracellular rickettsial pathogens, as they depend on eukaryotic cells for survival. To manipulate the intracellular environment, these bacteria use Type IV Secretion Systems (T4SS) to deliver effectors into the host cell. To date, few rickettsial T4SS translocated effectors have been identified and have only been examined in the context of mammalian infection. We identified an effector from the tick-borne rickettsial pathogen Anaplasma phagocytophilum , HGE1_02492, as critical for survival in tick cells and acquisition by ticks in vivo . Conversely, HGE1_02492 was dispensable during mammalian cell culture and murine infection. We show HGE1_02492 is translocatable in a T4SS-dependent manner to the host cell cytosol. In eukaryotic cells, the HGE1_02492 localized with cortical actin filaments, which is dependent on multiple sub-domains of the protein. HGE1_02492 is the first arthropod-vector specific T4SS translocated effector identified from a rickettsial pathogen. Moreover, the subcellular target of HGE1_02492 suggests that A. phagocytophilum is manipulating actin to enable arthropod colonization. Based on these findings, we propose the name AteA for Anaplasma ( phagocytophilum ) tick effector A. Altogether, we show that A. phagocytophilum uses distinct strategies to cycle between mammals and arthropods. Importance: Ticks are the number one vector of pathogens for livestock worldwide and for humans in the US. The biology of tick transmission is an understudied area. Understanding this critical interaction could provide opportunities to affect the course of disease spread. In this study we examined the zoonotic tick-borne agent Anaplasma phagocytophilum and identified a secreted protein, AteA, that is expressed in a tick-specific manner. These secreted proteins, termed effectors, are the first proteins to interact with the host environment. AteA is essential for survival in ticks and appears to interact with cortical actin. Most effector proteins are studied in the context of the mammalian host; however, understanding how this unique set of proteins affect tick transmission is critical to developing interventions.

3.
Pathog Dis ; 79(5)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34077527

RESUMO

Anaplasma phagocytophilum (Ap), agent of human anaplasmosis, is an intracellular bacterium that causes the second most common tick-borne illness in North America. To address the lack of a genetic system for these pathogens, we used random Himar1 transposon mutagenesis to generate a library of Ap mutants capable of replicating in human promyelocytes (HL-60 cells). Illumina sequencing identified 1195 non-randomly distributed insertions. As the density of mutants was non-saturating, genes without insertions were either essential for Ap, or spared randomly. To resolve this question, we applied a biostatistical method for prediction of essential genes. Since the chances that a transposon was inserted into genomic TA dinucleotide sites should be the same for all loci, we used a Markov chain Monte Carlo model to estimate the probability that a non-mutated gene was essential for Ap. Predicted essential genes included those coding for structural ribosomal proteins, enzymes involved in metabolism, components of the type IV secretion system, antioxidant defense molecules and hypothetical proteins. We have used an in silico post-genomic approach to predict genes with high probability of being essential for replication of Ap in HL-60 cells. These results will help target genes to investigate their role in the pathogenesis of human anaplasmosis.


Assuntos
Anaplasma phagocytophilum/genética , DNA Bacteriano/genética , Ehrlichiose , Genes Essenciais/genética , Células Precursoras de Granulócitos , Linhagem Celular , Elementos de DNA Transponíveis/genética , Ehrlichiose/genética , Ehrlichiose/microbiologia , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias de Markov
4.
J Bacteriol ; 202(23)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32928930

RESUMO

Many pathogenic bacteria translocate virulence factors into their eukaryotic hosts by means of type IV secretion systems (T4SS) spanning the inner and outer membranes. Genes encoding components of these systems have been identified within the order Rickettsiales based upon their sequence similarities to other prototypical systems. Anaplasma phagocytophilum strains are obligate intracellular, tick-borne bacteria that are members of this order. The organization of these components at the genomic level was determined in several Anaplasma phagocytophilum strains, showing overall conservation, with the exceptions of the virB2 and virB6 genes. The virB6 loci are characterized by the presence of four virB6 copies (virB6-1 through virB6-4) arranged in tandem within a gene cluster known as the sodB-virB operon. Interestingly, the virB6-4 gene varies significantly in length among different strains due to extensive tandem repeats at the 3' end. To gain an understanding of how these enigmatic virB6 genes function in A. phagocytophilum, we investigated their expression in infected human and tick cells. Our results show that these genes are expressed by A. phagocytophilum replicating in both cell types and that VirB6-3 and VirB6-4 proteins are surface exposed. Analysis of an A. phagocytophilum mutant carrying the Himar1 transposon within the virB6-4 gene demonstrated that the insertion not only disrupted its expression but also exerted a polar effect on the sodB-virB operon. Moreover, the altered expression of genes within this operon was associated with the attenuated in vitro growth of A. phagocytophilum in human and tick cells, indicating the importance of these genes in the physiology of this obligate intracellular bacterium in such different environments.IMPORTANCE Knowledge of the T4SS is derived from model systems, such as Agrobacterium tumefaciens The structure of the T4SS in Rickettsiales differs from the classical arrangement. These differences include missing and duplicated components with structural alterations. Particularly, two sequenced virB6-4 genes encode unusual C-terminal structural extensions resulting in proteins of 4,322 (GenBank accession number AGR79286.1) and 9,935 (GenBank accession number ANC34101.1) amino acids. To understand how the T4SS is used in A. phagocytophilum, we describe the expression of the virB6 paralogs and explore their role as the bacteria replicate within its host cell. Conclusions about the importance of these paralogs for colonization of human and tick cells are supported by the deficient phenotype of an A. phagocytophilum mutant isolated from a sequence-defined transposon insertion library.


Assuntos
Anaplasma phagocytophilum/crescimento & desenvolvimento , Anaplasma phagocytophilum/genética , Proteínas de Bactérias/genética , Anaplasma phagocytophilum/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Linhagem Celular , Ehrlichiose/microbiologia , Humanos , Mutagênese Insercional , Óperon , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
5.
Front Vet Sci ; 7: 111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211428

RESUMO

The incidence of human diseases caused by tick-borne pathogens is increasing but little is known about the molecular interactions between the agents and their vectors and hosts. Anaplasma phagocytophilum (Ap) is an obligate intracellular, tick-borne bacterium that causes granulocytic anaplasmosis in humans, dogs, sheep, and horses. In mammals, neutrophil granulocytes are a primary target of infection, and in ticks, Ap has been found in gut and salivary gland cells. To identify bacterial genes that enable Ap to invade and proliferate in human and tick cells, labeled mRNA from Ap bound to or replicating within human and tick cells (lines HL-60 and ISE6), and replicating in primary human granulocytes ex vivo, was hybridized to a custom tiling microarray containing probes representing the entire Ap genome. Probe signal values plotted over a map of the Ap genome revealed antisense transcripts and unannotated genes. Comparisons of transcript levels from each annotated gene between test conditions (e.g., Ap replicating in HL-60 vs. ISE6) identified those that were differentially transcribed, thereby highlighting genes associated with each condition. Bacteria replicating in HL-60 cells upregulated 122 genes compared to those in ISE6, including numerous p44 paralogs, five HGE-14 paralogs, and 32 hypothetical protein genes, of which 47% were predicted to be secreted or localized to the membrane. By comparison, 60% of genes upregulated in ISE6 encoded hypothetical proteins, 60% of which were predicted to be secreted or membrane associated. In granulocytes, Ap upregulated 120 genes compared to HL-60, 33% of them hypothetical and 43% of those predicted to encode secreted or membrane associated proteins. HL-60-grown bacteria binding to HL-60 cells barely responded transcriptionally, while ISE6-grown bacteria binding to ISE6 cells upregulated 48 genes. HL-60-grown bacteria, when incubated with ISE6 cells, upregulated the same genes that were upregulated by ISE6-grown bacteria exposed to uninfected ISE6. Hypothetical genes (constituting about 29% of Ap genes) played a disproportionate role in most infection scenarios, and particular sets of them were consistently upregulated in bacteria binding/entering both ISE6 and HL-60 cells. This suggested that the encoded proteins played central roles in establishing infection in ticks and humans.

6.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076433

RESUMO

Ehrlichia muris subsp. eauclairensis is recognized as the etiological agent of human ehrlichiosis in Minnesota and Wisconsin. We describe the culture isolation of this organism from a field-collected tick and detail its relationship to other species of Ehrlichia The isolate could be grown in a variety of cultured cell lines and was effectively transmitted between Ixodes scapularis ticks and rodents, with PCR and microscopy demonstrating a broad pattern of dissemination in arthropod and mammalian tissues. Conversely, Amblyomma americanum ticks were not susceptible to infection by the Ehrlichia Histologic sections further revealed that the wild-type isolate was highly virulent for mice and hamsters, causing severe systemic disease that was frequently lethal. A Himar1 transposase system was used to create mCherry- and mKate-expressing EmCRT mutants, which retained the ability to infect rodents and ticks.IMPORTANCE Ehrlichioses are zoonotic diseases caused by intracellular bacteria that are transmitted by ixodid ticks. Here we report the culture isolation of bacteria which are closely related to, or the same as the Ehrlichia muris subsp. eauclairensis, a recently recognized human pathogen. EmCRT, obtained from a tick removed from deer at Camp Ripley, MN, is the second isolate of this subspecies described and is distinctive in that it was cultured directly from a field-collected tick. The isolate's cellular tropism, pathogenic changes caused in rodent tissues, and tick transmission to and from rodents are detailed in this study. We also describe the genetic mutants created from the EmCRT isolate, which are valuable tools for the further study of this intracellular pathogen.


Assuntos
Ehrlichia/isolamento & purificação , Ixodes/microbiologia , Transformação Genética , Animais , Cricetinae/microbiologia , Cervos/microbiologia , Ehrlichia/genética , Ehrlichia/fisiologia , Ehrlichia/ultraestrutura , Feminino , Masculino , Camundongos/microbiologia , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/veterinária , Minnesota
7.
Ticks Tick Borne Dis ; 10(2): 482-494, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30466964

RESUMO

Mutational analysis is an efficient approach to identifying microbial gene function. Until recently, lack of an effective tool for Anaplasmataceae yielding reproducible results has created an obstacle to functional genomics, because surrogate systems, e.g., ectopic gene expression and analysis in E. coli, may not provide accurate answers. We chose to focus on a method for high-throughput generation of mutants via random mutagenesis as opposed to targeted gene inactivation. In our search for a suitable mutagenesis tool, we considered attributes of the Himar1 transposase system, i.e., random insertion into AT dinucleotide sites, which are abundant in Anaplasmataceae, and lack of requirement for specific host factors. We chose the Anaplasma marginale tr promoter, and the clinically irrelevant antibiotic spectinomycin for selection, and in addition successfully implemented non-antibiotic selection using an herbicide resistance gene. These constructs function reasonably well in Anaplasma phagocytophilum harvested from human promyelocyte HL-60 cells or Ixodes scapularis tick cells. We describe protocols developed in our laboratory, and discuss what likely makes them successful. What makes Anaplasmataceae electroporation competent is unknown and manipulating electroporation conditions has not improved mutational efficiency. A concerted effort is needed to resolve remaining problems that are inherent to the obligate intracellular bacteria. Finally, using this approach, we describe the discovery and characterization of a putative secreted effector necessary for Ap survival in HL-60 cells.


Assuntos
Anaplasmataceae/genética , Genes Bacterianos , Mutagênese , Anaplasma marginale/genética , Anaplasma phagocytophilum/genética , Animais , Análise Mutacional de DNA , Elementos de DNA Transponíveis , Genômica , Células HL-60 , Humanos , Ixodes/citologia , Transformação Bacteriana
8.
Int J Syst Evol Microbiol ; 67(7): 2121-2126, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28699575

RESUMO

We have previously described a novel taxon of the genus Ehrlichia (type strain WisconsinT), closely related to Ehrlichia muris, that causes human ehrlichiosis among patients with exposures to ticks in the upper midwestern USA. DNA from this bacterium was also detected in Ixodes scapularis and Peromyscus leucopus collected in Minnesota and Wisconsin. To determine the relationship between the E. muris-like agent (EMLA) and other species of the genus Ehrlichia phenotypic, genotypic and epidemiologic comparisons were undertaken, including sequence analysis of eight gene loci (3906 nucleotides) for 39 EMLA DNA samples and the type strain of E. muris AS145T. Three loci were also sequenced from DNA of nine strains of E. muris from mouse spleens from Japan. All sequences from E. muris were distinct from homologous EMLA sequences, but differences between them were less than those observed among other species of the genus Ehrlichia. Phenotypic comparison of EMLA and E. muris revealed similar culture and electron microscopic characteristics, but important differences were noted in their geographic distribution, ecological associations and behavior in mouse models of infection. Based on these comparisons, we propose that type strain WisconsinT represents a novel subspecies, Ehrlichia murissubsp. eauclairensis,subsp. nov. This strain is available through the Centers for Disease Control and Prevention Rickettsial Isolate Reference Collection (CRIRC EMU002T) and through the Collection de Souches de l'Unité des Rickettsies (CSURP2883 T). The subspecies Ehrlichia murissubsp. muris subsp. nov. is automatically created and the type strain AS145T is also available through the same collections (CRIRC EMU001T, CSUR E2T). Included is an emended description of E. muris.


Assuntos
Ehrlichia/classificação , Ixodes/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ehrlichia/genética , Ehrlichia/isolamento & purificação , Ehrlichiose/microbiologia , Feminino , Humanos , Japão , Camundongos , Minnesota , Peromyscus/microbiologia , Análise de Sequência de DNA , Wisconsin
9.
J Med Entomol ; 53(2): 409-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26721866

RESUMO

A reduction in the use of animals in infectious disease research is desirable for animal welfare as well as for simplification and standardization of experiments. An artificial silicone-based membrane-feeding system was adapted for complete engorgement of adult and nymphal Ixodes scapularis Say (Acari: Ixodidae), and for infecting nymphs with pathogenic, tick-borne bacteria. Six wild-type and genetically transformed strains of four species of bacteria were inoculated into sterile bovine blood and fed to ticks. Pathogens were consistently detected in replete nymphs by polymerase chain reaction. Adult ticks that ingested bacteria as nymphs were evaluated for transstadial transmission. Borrelia burgdorferi and Ehrlichia muris-like agent showed high rates of transstadial transmission to adult ticks, whereas Anaplasma phagocytophilum and Rickettsia monacensis demonstrated low rates of transstadial transmission/maintenance. Artificial membrane feeding can be used to routinely maintain nymphal and adult I. scapularis, and infect nymphs with tick-borne pathogens.


Assuntos
Entomologia/métodos , Ixodes/microbiologia , Anaplasma phagocytophilum , Animais , Borrelia burgdorferi , Entomologia/instrumentação , Comportamento Alimentar , Feminino , Rickettsia
10.
PLoS Pathog ; 11(11): e1005248, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544981

RESUMO

Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA), is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt) family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6) at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4), but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT) were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT) was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8), the S-adenosine homocystein-bound (PDB_ID:4OA5), the SAH-Mn2+ bound (PDB_ID:4PCA), and SAM- Mn2+ bound (PDB_ID:4PCL) X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary mutations.


Assuntos
Anaplasma phagocytophilum/enzimologia , Ehrlichiose/microbiologia , Ixodes/microbiologia , Metiltransferases/metabolismo , Carrapatos/microbiologia , Animais , Ehrlichiose/genética , Ixodes/imunologia , Metiltransferases/genética , Ativação Transcricional , Regulação para Cima
11.
PLoS One ; 10(9): e0137214, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26352829

RESUMO

Rickettsia bellii is an obligate intracellular bacterium that is one of the few rickettsiae that encode a complete set of conjugative transfer (tra) genes involved in bacterial conjugation and has been shown to exhibit pili-like structures. The reductive genomes of rickettsiae beg the question whether the tra genes are nonfunctional or functioning to enhance the genetic plasticity and biology of rickettsiae. We characterized the transcriptional dynamics of R. bellii tra genes in comparison to genes transcribed stably and above the background level to understand when and at what levels the tra genes are active or whether the tra genes are degenerative. We determined that the best reference genes, out of 10 tested, were methionyl tRNA ligase (metG) or a combination of metG and ribonucleoside diphosphate reductase 2 subunit beta (nrdF), using statistical algorithms from two different programs: Normfinder and BestKeeper. To validate the use of metG with other rickettsial genes exhibiting variable transcriptional patterns we examined its use with sca2 and rickA, genes involved in actin based motility. Both were shown to be up-regulated at different times of replication in Vero cells, showing variable and stable transcription levels of rickA and sca2, respectively. traATi was up-regulated at 72 hours post inoculation in the tick cell line ISE6, but showed no apparent changes in the monkey cell line Vero and mouse cell line L929. The transcription of tra genes was positively correlated with one another and up-regulated from 12 to 72 hours post inoculation (HPI) when compared to RBE_0422 (an inactivated transposase-derivative found within the tra cluster). Thus, the up-regulation of the tra genes indicated that the integrity and activity of each gene were intact and may facilitate the search for the optimal conditions necessary to demonstrate conjugation in rickettsiae.


Assuntos
Proteínas de Bactérias/biossíntese , Conjugação Genética/genética , Rickettsia/genética , Transcrição Gênica , Actinas/metabolismo , Animais , Ataxina-2/biossíntese , Ataxina-2/genética , Proteínas de Bactérias/genética , Chlorocebus aethiops , Proteínas de Fímbrias/biossíntese , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Camundongos , Filogenia , RNA Ligase (ATP)/biossíntese , RNA Ligase (ATP)/genética , Ribonucleotídeo Redutases/biossíntese , Ribonucleotídeo Redutases/genética , Rickettsia/crescimento & desenvolvimento , Células Vero
12.
PLoS One ; 10(3): e0122007, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781930

RESUMO

Human pathogens transmitted by ticks undergo complex life cycles alternating between the arthropod vector and a mammalian host. While the latter has been investigated to a greater extent, examination of the biological interactions between microbes and the ticks that carry them presents an equally important opportunity for disruption of the disease cycle. In this study, we used in situ hybridization to demonstrate infection by the Ehrlichia muris-like organism, a newly recognized human pathogen, of Ixodes scapularis ticks, a primary vector for several important human disease agents. This allowed us to assess whole sectioned ticks for the patterns of tissue invasion, and demonstrate generalized dissemination of ehrlichiae in a variety of cell types and organs within ticks infected naturally via blood feeding. Electron microscopy was used to confirm these results. Here we describe a strong ehrlichial affinity for epithelial cells, neuronal cells of the synganglion, salivary glands, and male accessory glands.


Assuntos
Vetores Aracnídeos/microbiologia , Ehrlichia , Hibridização In Situ/métodos , Ixodes/microbiologia , Animais , Humanos , Masculino
13.
BMC Genomics ; 13: 678, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23190684

RESUMO

BACKGROUND: Anaplasma phagocytophilum is an intracellular organism in the Order Rickettsiales that infects diverse animal species and is causing an emerging disease in humans, dogs and horses. Different strains have very different cell tropisms and virulence. For example, in the U.S., strains have been described that infect ruminants but not dogs or rodents. An intriguing question is how the strains of A. phagocytophilum differ and what different genome loci are involved in cell tropisms and/or virulence. Type IV secretion systems (T4SS) are responsible for translocation of substrates across the cell membrane by mechanisms that require contact with the recipient cell. They are especially important in organisms such as the Rickettsiales which require T4SS to aid colonization and survival within both mammalian and tick vector cells. We determined the structure of the T4SS in 7 strains from the U.S. and Europe and revised the sequence of the repetitive virB6 locus of the human HZ strain. RESULTS: Although in all strains the T4SS conforms to the previously described split loci for vir genes, there is great diversity within these loci among strains. This is particularly evident in the virB2 and virB6 which are postulated to encode the secretion channel and proteins exposed on the bacterial surface. VirB6-4 has an unusual highly repetitive structure and can have a molecular weight greater than 500,000. For many of the virs, phylogenetic trees position A. phagocytophilum strains infecting ruminants in the U.S. and Europe distant from strains infecting humans and dogs in the U.S. CONCLUSIONS: Our study reveals evidence of gene duplication and considerable diversity of T4SS components in strains infecting different animals. The diversity in virB2 is in both the total number of copies, which varied from 8 to 15 in the herein characterized strains, and in the sequence of each copy. The diversity in virB6 is in the sequence of each of the 4 copies in the single locus and the presence of varying numbers of repetitive units in virB6-3 and virB6-4. These data suggest that the T4SS should be investigated further for a potential role in strain virulence of A. phagocytophilum.


Assuntos
Anaplasma phagocytophilum/genética , Proteínas de Bactérias/genética , Sequência de Aminoácidos , Anaplasma phagocytophilum/citologia , Anaplasma phagocytophilum/patogenicidade , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Cães , Loci Gênicos/genética , Humanos , Camundongos , Dados de Sequência Molecular , Periplasma/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade da Espécie
14.
N Engl J Med ; 365(5): 422-9, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21812671

RESUMO

BACKGROUND: Ehrlichiosis is a clinically important, emerging zoonosis. Only Ehrlichia chaffeensis and E. ewingii have been thought to cause ehrlichiosis in humans in the United States. Patients with suspected ehrlichiosis routinely undergo testing to ensure proper diagnosis and to ascertain the cause. METHODS: We used molecular methods, culturing, and serologic testing to diagnose and ascertain the cause of cases of ehrlichiosis. RESULTS: On testing, four cases of ehrlichiosis in Minnesota or Wisconsin were found not to be from E. chaffeensis or E. ewingii and instead to be caused by a newly discovered ehrlichia species. All patients had fever, malaise, headache, and lymphopenia; three had thrombocytopenia; and two had elevated liver-enzyme levels. All recovered after receiving doxycycline treatment. At least 17 of 697 Ixodes scapularis ticks collected in Minnesota or Wisconsin were positive for the same ehrlichia species on polymerase-chain-reaction testing. Genetic analyses revealed that this new ehrlichia species is closely related to E. muris. CONCLUSIONS: We report a new ehrlichia species in Minnesota and Wisconsin and provide supportive clinical, epidemiologic, culture, DNA-sequence, and vector data. Physicians need to be aware of this newly discovered close relative of E. muris to ensure appropriate testing, treatment, and regional surveillance. (Funded by the National Institutes of Health and the Centers for Disease Control and Prevention.).


Assuntos
Ehrlichia/classificação , Ehrlichiose/microbiologia , Ixodes/microbiologia , Zoonoses/microbiologia , Animais , Ehrlichia/genética , Ehrlichia/isolamento & purificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Minnesota , Filogenia , Reação em Cadeia da Polimerase , Wisconsin , Adulto Jovem
15.
BMC Genomics ; 9: 364, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18671858

RESUMO

BACKGROUND: Anaplasma phagocytophilum (Ap) is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6) and pathogenesis (human; HL-60 and HMEC-1). RESULTS: Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6) and the human (HL-60 and HMEC-1) cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system) showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins) paralogs (of 114 total), through elevated signal produced to the unique hypervariable region of each - 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. CONCLUSION: Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.


Assuntos
Anaplasma phagocytophilum/genética , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Genoma Bacteriano , Carrapatos/microbiologia , Animais , Linhagem Celular , DNA Complementar/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Transcrição Gênica
16.
J Invertebr Pathol ; 94(3): 163-74, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17125789

RESUMO

Ticks (Acari: Ixodidae) are ubiquitous hosts of rickettsiae (Rickettsiaceae: Rickettsia), obligate intracellular bacteria that occur as a continuum from nonpathogenic arthropod endosymbionts to virulent pathogens of both arthropod vectors and vertebrates. Visualization of rickettsiae in hosts has traditionally been limited to techniques utilizing fixed tissues. We report epifluorescence microscopy observations of unfixed tick tissues infected with a spotted fever group endosymbiont, Rickettsia monacensis, transformed to express green fluorescent protein (GFP). Fluorescent rickettsiae were readily visualized in tick tissues. In adult female, but not male, Ixodes scapularis infected by capillary feeding, R. monacensis disseminated from the gut and infected the salivary glands that are crucial to the role of ticks as vectors. The rickettsiae infected the respiratory tracheal system, a potential dissemination pathway and possible infection reservoir during tick molting. R. monacensis disseminated from the gut of capillary fed I. scapularis nymphs and was transstadially transmitted to adults. Larvae, infected by immersion, transstadially transmitted the rickettsiae to nymphs. Infected female I. scapularis did not transovarially transmit R. monacensis to progeny and the rickettsiae were not horizontally transmitted to a rabbit or hamsters. Survival of infected nymphal and adult I. scapularis did not differ from that of uninfected control ticks. R. monacensis did not disseminate from the gut of capillary fed adult female Amblyomma americanum (L.), or adult Dermacentor variabilis (Say) ticks of either sex. Infection of I. scapularis with R. monacensis expressing GFP provides a model system allowing visualization and study of live rickettsiae in unfixed tissues of an arthropod host.


Assuntos
Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde/análise , Ixodes/microbiologia , Rickettsia/fisiologia , Animais , Cricetinae , Transmissão de Doença Infecciosa , Feminino , Proteínas de Fluorescência Verde/genética , Insetos Vetores/virologia , Ixodidae/microbiologia , Larva/microbiologia , Masculino , Microscopia de Fluorescência , Modelos Animais , Ninfa/microbiologia , Coelhos , Rickettsia/genética , Glândulas Salivares/microbiologia
17.
BMC Biotechnol ; 6: 42, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17076894

RESUMO

BACKGROUND: Tick-borne pathogens cause emerging zoonoses, and include fastidious organisms such as Anaplasma phagocytophilum. Because of their obligate intracellular nature, methods for mutagenesis and transformation have not been available. RESULTS: To facilitate genetic manipulation, we transformed A. phagocytophilum (Ap) to express a green fluorescent protein (GFP) with the Himar1 transposase system and selection with the clinically irrelevant antibiotic spectinomycin. CONCLUSION: These transformed bacteria (GFP/Ap) grow at normal rates and are brightly fluorescent in human, monkey, and tick cell culture. Molecular characterization of the GFP/Ap genomic DNA confirmed transposition and the flanking genomic insertion locations were sequenced. Three mice inoculated with GFP/Ap by intraperitoneal injection became infected as demonstrated by the appearance of morulae in a peripheral blood neutrophil and re-isolation of the bacteria in culture.


Assuntos
Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Transformação Bacteriana/fisiologia , Animais , Proteínas de Fluorescência Verde/genética , Haplorrinos , Humanos , Carrapatos
18.
Transplantation ; 77(10): 1500-6, 2004 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15239611

RESUMO

BACKGROUND: In a pig model of intestinal transplantation, we previously showed that hepatic conditioning through portal donor-specific blood transfusion (pDSBT), high-dose tacrolimus (TAC), and steroids prevented rejection and increased survival Our current study tests a protocol of pDSBT, short-term mycophenolate mofetil (MMF), and low-dose TAC to eliminate the use of steroids, reduce TAC dosage, and increase the level of chimerism in the peripheral blood. MATERIALS AND METHODS: Four groups of outbred, mixed lymphocyte culture (MLC)-reactive pigs underwent bowel transplants and pDSBT. Immunosuppression (group 1, high-dose TAC and steroids; group 2, low-dose TAC and MMF; group 3, low-dose TAC, MMF, and aminoguanidine; group 4, low-dose TAC, MMF, and arginine) was discontinued after 28 days. RNA was extracted from intestinal graft and native liver biopsies for cytokine measurements. Chimerism levels were determined using a Q-PCR analysis. RESULTS: Pig survival and death rates due to rejection did not significantly differ between the four groups. Chimerism levels determined by Q-PCR analysis were not different until day 28. After discontinuation of immunosuppression, we noted a trend (P = 0.15) toward higher mean chimerism levels on day 60 for groups 2, 3, and 4 (9%) vs. group 1 (0.5%). Tissue cytokine and serum nitrate levels did not significantly differ between the four groups. Attempts to modify nitric oxide synthase activity offered no added benefit. CONCLUSIONS: The combination of pDSBT, MMF, and low-dose TAC (vs. high-dose TAC and steroids) allowed sustained levels of mixed chimerism to develop after discontinuation of immunosuppression.


Assuntos
Transfusão de Sangue , Imunossupressores/administração & dosagem , Intestinos/transplante , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/administração & dosagem , Sistema Porta , Tacrolimo/administração & dosagem , Doadores de Tecidos , Quimeras de Transplante , Animais , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Esquema de Medicação , Quimioterapia Combinada , Rejeição de Enxerto/mortalidade , Doença Enxerto-Hospedeiro/mortalidade , Infecções/mortalidade , Masculino , Óxido Nítrico/metabolismo , Esteroides/administração & dosagem , Análise de Sobrevida , Suínos
19.
Ann Thorac Surg ; 77(3): 1008-15, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14992916

RESUMO

BACKGROUND: The incidence of esophageal adenocarcinoma (EAC) has risen dramatically in the last two decades. As with other malignancies, changes in gene expression play a key role in the development and progression of these tumors. METHODS: Microarray analysis was used to study gene expression of 12,000 genes in EAC specimens. Adenocarcinoma tissue samples (n = 10) and controls of normal stomach (n = 6) and esophageal (n = 7) mucosa were collected fresh, then rapidly frozen in liquid nitrogen. The messenger ribonucleic acid (mRNA) from the samples was isolated, reverse transcribed, and used to generate biotin-labeled mRNA fragments, which were hybridized to Affymetrix U95 gene chips (AME Bioscience, Norway) for analysis. Additional samples analyzed included tissue containing dysplastic Barrett's epithelium from three patients, metastatic lymph nodes from two patients with EAC, one squamous carcinoma, and two esophageal cancer cell lines. Samples were segregated into groups with similar patterns of gene expression using clustering algorithms and gene sets that differentiated tumors from normal tissue were generated. RESULTS: There were 150 genes that were fourfold up regulated and 183 genes that were fourfold down regulated in the esophageal adenocarcinoma specimens, as compared to normal esophageal mucosa tissue controls. Using paired specimens (n = 5) and the paired t-test (p Value of 0.05) as a filter, only 64 genes were fourfold up regulated and 110 were fourfold down regulated. These groups included cytoskeletal, cell adhesion, tumor suppressor, and signal transduction genes. Hierarchical clustering segregated the samples into the expected divisions. The esophageal cancer cell lines, OE19 and OE33, clustered separately from the EAC specimens. Extremely high gene expression levels of the ERBB2 gene, seen in the microarray analysis of the 2 cell lines, correlated with amplification of the gene determined by Southern blotting. CONCLUSIONS: Gene expression patterns from a small subset of genes distinguish EAC specimens from normal controls. This technique can rapidly identify genes for targeted chemotherapeutic approaches to cancer treatment.


Assuntos
Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Expressão Gênica , Linhagem Celular Tumoral , Genes erbB-2 , Humanos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Neoplásico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...