Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684899

RESUMO

The origin and functionality of long noncoding RNA (lncRNA) remain poorly understood. Here, we show that multiple quantitative trait loci modulating distinct domestication traits in soybeans are pleiotropic effects of a locus composed of two tandem lncRNA genes. These lncRNA genes, each containing two inverted repeats, originating from coding sequences of the MYB genes, function in wild soybeans by generating clusters of small RNA (sRNA) species that inhibit the expression of their MYB gene relatives through post-transcriptional regulation. By contrast, the expression of lncRNA genes in cultivated soybeans is severely repressed, and, consequently, the corresponding MYB genes are highly expressed, shaping multiple distinct domestication traits as well as leafhopper resistance. The inverted repeats were formed before the divergence of the Glycine genus from the Phaseolus-Vigna lineage and exhibit strong structure-function constraints. This study exemplifies a type of target for selection during plant domestication and identifies mechanisms of lncRNA formation and action.

2.
Plant J ; 104(3): 800-811, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772442

RESUMO

The limited number of recombinant events in recombinant inbred lines suggests that for a biparental population with a limited number of recombinant inbred lines, it is unnecessary to genotype the lines with many markers. For genomic prediction and selection, previous studies have demonstrated that only 1000-2000 genome-wide common markers across all lines/accessions are needed to reach maximum efficiency of genomic prediction in populations. Evaluation of too many markers will not only increase the cost but also generate redundant information. We developed a soybean (Glycine max) assay, BARCSoySNP6K, containing 6000 markers, which were carefully chosen from the SoySNP50K assay based on their position in the soybean genome and haplotype block, polymorphism among accessions and genotyping quality. The assay includes 5000 single nucleotide polymorphisms (SNPs) from euchromatic and 1000 from heterochromatic regions. The percentage of SNPs with minor allele frequency >0.10 was 95% and 91% in the euchromatic and heterochromatic regions, respectively. Analysis of progeny from two large families genotyped with SoySNP50K versus BARCSoySNP6K showed that the position of the common markers and number of unique bins along linkage maps were consistent based on the SNPs genotyped with the two assays; however, the rate of redundant markers was dramatically reduced with the BARCSoySNP6K. The BARCSoySNP6K assay is proven as an excellent tool for detecting quantitative trait loci, genomic selection and assessing genetic relationships. The assay is commercialized by Illumina Inc. and being used by soybean breeders and geneticists and the list of SNPs in the assay is an ideal resource for SNP genotyping by targeted amplicon sequencing.


Assuntos
Técnicas Genéticas , Genética Populacional , Glycine max/genética , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Eucromatina/genética , Marcadores Genéticos , Genoma de Planta , Haplótipos , Heterocromatina/genética , Melhoramento Vegetal
4.
Theor Appl Genet ; 132(4): 1195-1209, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30607438

RESUMO

KEY MESSAGE: A total of 132 domestication-related QTLs, of which 41 were novel, were identified through genotyping-by-sequencing of two Glycine max × Glycine soja populations. Soybean [Glycine max (L.) Merr.] was domesticated in East Asia from the wild progenitor Glycine soja. The domestication process led to many distinct morphological changes that adapt it to cultivation. These include larger seeds, erect growth, larger stem diameter, reduced pod shattering, and altered growth habit. The objective of this study was to identify QTLs controlling key domestication-related traits (DRTs) using interspecific mapping populations. A total of 151 RILs from Williams 82 × PI 468916 and 510 RILs from Williams 82 × PI 479752 were utilized for QTL mapping. These lines were genotyped using a genotyping-by-sequencing protocol which resulted in approximately 5000 polymorphic SNP markers. The number of QTLs detected for each of the eleven DRTs ranged between 0-4 QTLs in the smaller Williams 82 × PI 468916 population and 3-16 QTLs in the larger Williams 82 × PI 479752 population. A total of 132 QTLs were detected, of which 51 are associated with selective sweeps previously related to soybean domestication. These QTLs were detected across all 20 chromosomes within 42 genomic regions. This study identifies 41 novel QTLs not detected in previous studies using smaller populations while also confirming the quantitative nature for several of the important DRTs in soybeans. These results would enable more effective use of the wild germplasm for soybean improvement.


Assuntos
Mapeamento Cromossômico , Domesticação , Técnicas de Genotipagem , Glycine max/genética , Característica Quantitativa Herdável , Análise de Sequência de DNA , Cruzamentos Genéticos , Epistasia Genética , Endogamia , Modelos Genéticos , Fenótipo , Locos de Características Quantitativas/genética , Seleção Genética , Especificidade da Espécie
5.
Nat Plants ; 4(1): 30-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29292374

RESUMO

Many leguminous species have adapted their seed coat with a layer of powdery bloom that contains hazardous allergens and makes the seeds less visible, offering duel protection against potential predators 1 . Nevertheless, a shiny seed surface without bloom is desirable for human consumption and health, and is targeted for selection under domestication. Here we show that seed coat bloom in wild soybeans is mainly controlled by Bloom1 (B1), which encodes a transmembrane transporter-like protein for biosynthesis of the bloom in pod endocarp. The transition from the 'bloom' to 'no-bloom' phenotypes is associated with artificial selection of a nucleotide mutation that naturally occurred in the coding region of B1 during soybean domestication. Interestingly, this mutation not only 'shined' the seed surface, but also elevated seed oil content in domesticated soybeans. Such an elevation of oil content in seeds appears to be achieved through b1-modulated upregulation of oil biosynthesis in pods. This study shows pleiotropy as a mechanism underlying the domestication syndrome 2 , and may pave new strategies for development of soybean varieties with increased seed oil content and reduced seed dust.


Assuntos
Pleiotropia Genética/genética , Glycine max/genética , Óleo de Soja/metabolismo , Domesticação , Fenótipo , Sementes/anatomia & histologia , Sementes/genética , Glycine max/anatomia & histologia
6.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724068

RESUMO

Genome-wide association (GWA) has been used as a tool for dissecting the genetic architecture of quantitatively inherited traits. We demonstrate here that GWA can also be highly useful for detecting many major genes governing categorically defined phenotype variants that exist for qualitatively inherited traits in a germplasm collection. Genome-wide association mapping was applied to categorical phenotypic data available for 10 descriptive traits in a collection of ∼13,000 soybean [ (L.) Merr.] accessions that had been genotyped with a 50,000 single nucleotide polymorphism (SNP) chip. A GWA on a panel of accessions of this magnitude can offer substantial statistical power and mapping resolution, and we found that GWA mapping resulted in the identification of strong SNP signals for 24 classical genes as well as several heretofore unknown genes controlling the phenotypic variants in those traits. Because some of these genes had been cloned, we were able to show that the narrow GWA mapping SNP signal regions that we detected for the phenotypic variants had chromosomal bp spans that, with just one exception, overlapped the bp region of the cloned genes, despite local variation in SNP number and nonuniform SNP distribution in the chip set.


Assuntos
Produtos Agrícolas/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Glycine max/genética , Locos de Características Quantitativas , Epistasia Genética , Polimorfismo de Nucleotídeo Único
7.
Sci Data ; 2: 150036, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217490

RESUMO

One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.


Assuntos
Dióxido de Carbono , Produtos Agrícolas , Alimentos , Agricultura , Dióxido de Carbono/efeitos adversos , Mudança Climática , Plantas Comestíveis
8.
G3 (Bethesda) ; 5(10): 1999-2006, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26224783

RESUMO

The United States Department of Agriculture, Soybean Germplasm Collection includes 18,480 domesticated soybean and 1168 wild soybean accessions introduced from 84 countries or developed in the United States. This collection was genotyped with the SoySNP50K BeadChip containing greater than 50K single-nucleotide polymorphisms. Redundant accessions were identified in the collection, and distinct genetic backgrounds of soybean from different geographic origins were observed that could be a unique resource for soybean genetic improvement. We detected a dramatic reduction of genetic diversity based on linkage disequilibrium and haplotype structure analyses of the wild, landrace, and North American cultivar populations and identified candidate regions associated with domestication and selection imposed by North American breeding. We constructed the first soybean haplotype block maps in the wild, landrace, and North American cultivar populations and observed that most recombination events occurred in the regions between haplotype blocks. These haplotype maps are crucial for association mapping aimed at the identification of genes controlling traits of economic importance. A case-control association test delimited potential genomic regions along seven chromosomes that most likely contain genes controlling seed weight in domesticated soybean. The resulting dataset will facilitate germplasm utilization, identification of genes controlling important traits, and will accelerate the creation of soybean varieties with improved seed yield and quality.


Assuntos
Impressões Digitais de DNA , Pesquisa em Genética , Genoma de Planta , Genômica , Glycine max/genética , Cruzamento , Impressões Digitais de DNA/métodos , Genética Populacional , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Sementes
9.
Nat Genet ; 47(8): 939-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26098868

RESUMO

Loss of seed-coat impermeability was essential in the domestication of many leguminous crops to promote the production of their highly nutritious seeds. Here we show that seed-coat impermeability in wild soybean is controlled by a single gene, GmHs1-1, which encodes a calcineurin-like metallophosphoesterase transmembrane protein. GmHs1-1 is primarily expressed in the Malpighian layer of the seed coat and is associated with calcium content. The transition from impermeability to permeability in domesticated soybean was caused by artificial selection of a point mutation in GmHs1-1. Interestingly, a number of soybean landraces evaded selection for permeability because of an alternative selection for seed-coat cracking that also enables seed imbibition. Despite the single origin of the mutant allele Gmhs1-1, the distribution pattern of allelic variants in the context of soybean population structure and the detected signature of genomic introgression between wild and cultivated soybeans suggest that Gmhs1-1 may have experienced reselection for seed-coat permeability.


Assuntos
Calcineurina/genética , Glycine max/genética , Sementes/genética , Proteínas de Soja/genética , Sequência de Bases , Calcineurina/metabolismo , Cálcio/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Hibridização In Situ , Dados de Sequência Molecular , Mutação , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/metabolismo , Homologia de Sequência do Ácido Nucleico , Proteínas de Soja/classificação , Proteínas de Soja/metabolismo , Glycine max/classificação , Glycine max/metabolismo , Especificidade da Espécie
10.
BMC Genomics ; 16: 217, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25887991

RESUMO

BACKGROUND: Soybean (Glycine max) is a photoperiod-sensitive and self-pollinated species. Days to flowering (DTF) and maturity (DTM), duration of flowering-to-maturity (DFTM) and plant height (PH) are crucial for soybean adaptability and yield. To dissect the genetic architecture of these agronomically important traits, a population consisting of 309 early maturity soybean germplasm accessions was genotyped with the Illumina Infinium SoySNP50K BeadChip and phenotyped in multiple environments. A genome-wide association study (GWAS) was conducted using a mixed linear model that involves both relative kinship and population structure. RESULTS: The linkage disequilibrium (LD) decayed slowly in soybean, and a substantial difference in LD pattern was observed between euchromatic and heterochromatic regions. A total of 27, 6, 18 and 27 loci for DTF, DTM, DFTM and PH were detected via GWAS, respectively. The Dt1 gene was identified in the locus strongly associated with both DTM and PH. Ten candidate genes homologous to Arabidopsis flowering genes were identified near the peak single nucleotide polymorphisms (SNPs) associated with DTF. Four of them encode MADS-domain containing proteins. Additionally, a pectin lyase-like gene was also identified in a major-effect locus for PH where LD decayed rapidly. CONCLUSIONS: This study identified multiple new loci and refined chromosomal regions of known loci associated with DTF, DTM, DFTM and/or PH in soybean. It demonstrates that GWAS is powerful in dissecting complex traits and identifying candidate genes although LD decayed slowly in soybean. The loci and trait-associated SNPs identified in this study can be used for soybean genetic improvement, especially the major-effect loci associated with PH could be used to improve soybean yield potential. The candidate genes may serve as promising targets for studies of molecular mechanisms underlying the related traits in soybean.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla , Glycine max/genética , Arabidopsis/genética , Flores/genética , Genótipo , Desequilíbrio de Ligação , Fenótipo , Fotoperíodo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Polissacarídeo-Liases/genética , Locos de Características Quantitativas , Glycine max/crescimento & desenvolvimento
11.
J Agric Food Chem ; 63(11): 2862-9, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25756929

RESUMO

Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur-containing amino acids could enhance the nutritive value of soybean meal. Leginsulin, a cysteine-rich peptide, predominantly accumulates in Asian soybean accessions but not in most North American cultivars. By screening diverse soybean accessions from the USDA Soybean Germplasm Collection, we were able to identify one plant introduction, PI 427138, as a high-protein line with relatively high amounts of both elemental sulfur and leginsulin. We introgressed these desirable traits from PI 427138 into an experimental line with the aim of improving the overall protein content and quality of seed proteins. Biochemical characterization of inbred progenies from the cross of LD00-3309 with PI 427138 grown at six locations revealed stable ingression of high protein, high elemental sulfur, and high leginsulin accumulation. Comparison of soybean seed proteins resolved by high-resolution 2-D gel electrophoresis in combination with Delta2D image analysis software revealed preferential accumulation of a few glycinin subunits contributed to the increased protein content in the introgressed lines. Amino acid analysis revealed that even though the leginsulin introgressed lines had higher protein, leginsulin, and elemental sulfur, the overall concentration of sulfur-containing amino acids was not significantly altered when compared with the parental lines. The experimental soybean lines developed during this study (Leg-3, Leg-7, and Leg-8) lack A5, A4, and B3 glycinin subunits and could be utilized in breeding programs to develop high-quality tofu cultivars.


Assuntos
Proteínas de Transporte/metabolismo , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Albuminas , Ásia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cisteína/análise , Cisteína/metabolismo , Eletroforese em Gel Bidimensional , Genótipo , Endogamia , América do Norte , Valor Nutritivo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sementes/química , Sementes/genética , Sementes/metabolismo , Glycine max/química
12.
G3 (Bethesda) ; 4(11): 2283-94, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25246241

RESUMO

Soybean oil and meal are major contributors to world-wide food production. Consequently, the genetic basis for soybean seed composition has been intensely studied using family-based mapping. Population-based mapping approaches, in the form of genome-wide association (GWA) scans, have been able to resolve loci controlling moderately complex quantitative traits (QTL) in numerous crop species. Yet, it is still unclear how soybean's unique population history will affect GWA scans. Using one of the populations in this study, we simulated phenotypes resulting from a range of genetic architectures. We found that with a heritability of 0.5, ∼100% and ∼33% of the 4 and 20 simulated QTL can be recovered, respectively, with a false-positive rate of less than ∼6×10(-5) per marker tested. Additionally, we demonstrated that combining information from multi-locus mixed models and compressed linear-mixed models improves QTL identification and interpretation. We applied these insights to exploring seed composition in soybean, refining the linkage group I (chromosome 20) protein QTL and identifying additional oil QTL that may allow some decoupling of highly correlated oil and protein phenotypes. Because the value of protein meal is closely related to its essential amino acid profile, we attempted to identify QTL underlying methionine, threonine, cysteine, and lysine content. Multiple QTL were found that have not been observed in family-based mapping studies, and each trait exhibited associations across multiple populations. Chromosomes 1 and 8 contain strong candidate alleles for essential amino acid increases. Overall, we present these and additional data that will be useful in determining breeding strategies for the continued improvement of soybean's nutrient portfolio.


Assuntos
Genoma de Planta , Glycine max/genética , Sementes/genética , Aminoácidos/análise , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Sementes/química
13.
Plant Cell ; 26(7): 2831-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005919

RESUMO

Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean.


Assuntos
Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Proteínas de Domínio MADS/genética , Arabidopsis/genética , Sequência de Bases , Mapeamento Cromossômico , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Ligação Genética , Loci Gênicos , Proteínas de Domínio MADS/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Glycine max/crescimento & desenvolvimento
14.
Nature ; 510(7503): 139-42, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24805231

RESUMO

Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health.


Assuntos
Dióxido de Carbono/farmacologia , Produtos Agrícolas/química , Produtos Agrícolas/efeitos dos fármacos , Estado Nutricional , Valor Nutritivo/efeitos dos fármacos , Saúde Pública/tendências , Ar/análise , Atmosfera/química , Austrália , Cruzamento , Dióxido de Carbono/análise , Produtos Agrícolas/metabolismo , Dieta , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Fabaceae/química , Fabaceae/efeitos dos fármacos , Fabaceae/metabolismo , Saúde Global/tendências , Humanos , Ferro/análise , Ferro/metabolismo , Deficiências de Ferro , Japão , Fotossíntese/efeitos dos fármacos , Ácido Fítico/análise , Ácido Fítico/metabolismo , Estados Unidos , Zinco/análise , Zinco/deficiência , Zinco/metabolismo
16.
PLoS One ; 8(1): e54985, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372807

RESUMO

The objective of this research was to identify single nucleotide polymorphisms (SNPs) and to develop an Illumina Infinium BeadChip that contained over 50,000 SNPs from soybean (Glycine max L. Merr.). A total of 498,921,777 reads 35-45 bp in length were obtained from DNA sequence analysis of reduced representation libraries from several soybean accessions which included six cultivated and two wild soybean (G. soja Sieb. et Zucc.) genotypes. These reads were mapped to the soybean whole genome sequence and 209,903 SNPs were identified. After applying several filters, a total of 146,161 of the 209,903 SNPs were determined to be ideal candidates for Illumina Infinium II BeadChip design. To equalize the distance between selected SNPs, increase assay success rate, and minimize the number of SNPs with low minor allele frequency, an iteration algorithm based on a selection index was developed and used to select 60,800 SNPs for Infinium BeadChip design. Of the 60,800 SNPs, 50,701 were targeted to euchromatic regions and 10,000 to heterochromatic regions of the 20 soybean chromosomes. In addition, 99 SNPs were targeted to unanchored sequence scaffolds. Of the 60,800 SNPs, a total of 52,041 passed Illumina's manufacturing phase to produce the SoySNP50K iSelect BeadChip. Validation of the SoySNP50K chip with 96 landrace genotypes, 96 elite cultivars and 96 wild soybean accessions showed that 47,337 SNPs were polymorphic and generated successful SNP allele calls. In addition, 40,841 of the 47,337 SNPs (86%) had minor allele frequencies ≥ 10% among the landraces, elite cultivars and the wild soybean accessions. A total of 620 and 42 candidate regions which may be associated with domestication and recent selection were identified, respectively. The SoySNP50K iSelect SNP beadchip will be a powerful tool for characterizing soybean genetic diversity and linkage disequilibrium, and for constructing high resolution linkage maps to improve the soybean whole genome sequence assembly.


Assuntos
Genoma de Planta , Técnicas de Genotipagem , Glycine max/genética , Polimorfismo de Nucleotídeo Único , Alelos , Cromossomos de Plantas , Evolução Molecular , Frequência do Gene , Ligação Genética , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA
17.
Plant Physiol ; 160(4): 1827-39, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23037504

RESUMO

Current background ozone (O(3)) concentrations over the northern hemisphere's midlatitudes are high enough to damage crops and are projected to increase. Soybean (Glycine max) is particularly sensitive to O(3); therefore, establishing an O(3) exposure threshold for damage is critical to understanding the current and future impact of this pollutant. This study aims to determine the exposure response of soybean to elevated tropospheric O(3) by measuring the agronomic, biochemical, and physiological responses of seven soybean genotypes to nine O(3) concentrations (38-120 nL L(-1)) within a fully open-air agricultural field location across 2 years. All genotypes responded similarly, with season-long exposure to O(3) causing a linear increase in antioxidant capacity while reducing leaf area, light absorption, specific leaf mass, primary metabolites, seed yield, and harvest index. Across two seasons with different temperature and rainfall patterns, there was a robust linear yield decrease of 37 to 39 kg ha(-1) per nL L(-1) cumulative O(3) exposure over 40 nL L(-1). The existence of immediate effects of O(3) on photosynthesis, stomatal conductance, and photosynthetic transcript abundance before and after the initiation and termination of O(3) fumigation were concurrently assessed, and there was no evidence to support an instantaneous photosynthetic response. The ability of the soybean canopy to intercept radiation, the efficiency of photosynthesis, and the harvest index were all negatively impacted by O(3), suggesting that there are multiple targets for improving soybean responses to this damaging air pollutant.


Assuntos
Biomassa , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia , Ozônio/farmacologia , Fotossíntese , Absorção , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Modelos Lineares , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estações do Ano , Glycine max/efeitos dos fármacos , Glycine max/genética , Estados Unidos
18.
Theor Appl Genet ; 125(6): 1339-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837016

RESUMO

Soybean rust (SBR), caused by Phakopsora pachyrhizi Sydow, is one of the most economically important and destructive diseases of soybean [Glycine max (L.) Merr.] and the discovery of novel SBR resistance genes is needed because of virulence diversity in the pathogen. The objectives of this research were to map SBR resistance in plant introduction (PI) 561356 and to identify single nucleotide polymorphism (SNP) haplotypes within the region on soybean chromosome 18 where the SBR resistance gene Rpp1 maps. One-hundred F(2:3) lines derived from a cross between PI 561356 and the susceptible experimental line LD02-4485 were genotyped with genetic markers and phenotyped for resistance to P. pachyrhizi isolate ZM01-1. The segregation ratio of reddish brown versus tan lesion type in the population supported that resistance was controlled by a single dominant gene. The gene was mapped to a 1-cM region on soybean chromosome 18 corresponding to the same interval as Rpp1. A haplotype analysis of diverse germplasm across a 213-kb interval that included Rpp1 revealed 21 distinct haplotypes of which 4 were present among 5 SBR resistance sources that have a resistance gene in the Rpp1 region. Four major North American soybean ancestors belong to the same SNP haplotype as PI 561356 and seven belong to the same haplotype as PI 594538A, the Rpp1-b source. There were no North American soybean ancestors belonging to the SNP haplotypes found in PI 200492, the source of Rpp1, or PI 587886 and PI 587880A, additional sources with SBR resistance mapping to the Rpp1 region.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Glycine max/genética , Imunidade Vegetal , Polimorfismo de Nucleotídeo Único , Basidiomycota/patogenicidade , Cromossomos de Plantas , Cruzamentos Genéticos , DNA de Plantas/genética , Resistência à Doença , Ligação Genética , Marcadores Genéticos , Haplótipos , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Glycine max/imunologia , Glycine max/microbiologia
19.
Environ Pollut ; 166: 167-71, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22507388

RESUMO

Ozone-sensitive (S156) and -tolerant (R123 and R331) genotypes of snap bean (Phaseolus vulgaris L.) were tested as a plant bioindicator system for detecting O(3) effects at current and projected future levels of tropospheric O(3) and atmospheric CO(2) under field conditions. Plants were treated with ambient air, 1.4× ambient O(3) and 550 ppm CO(2) separately and in combination using Free Air Concentration Enrichment technology. Under ambient O(3) concentrations pod yields were not significantly different among genotypes. Elevated O(3) reduced pod yield for S156 (63%) but did not significantly affect yields for R123 and R331. Elevated CO(2) at 550 ppm alone did not have a significant impact on yield for any genotype. Amelioration of the O(3) effect occurred in the O(3) + CO(2) treatment. Ratios of sensitive to tolerant genotype pod yields were identified as a useful measurement for assessing O(3) impacts with potential applications in diverse settings including agricultural fields.


Assuntos
Poluentes Atmosféricos/toxicidade , Dióxido de Carbono/toxicidade , Monitoramento Ambiental/métodos , Ozônio/toxicidade , Phaseolus/efeitos dos fármacos , Adaptação Fisiológica , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Ozônio/análise , Ozônio/metabolismo , Phaseolus/fisiologia , Estresse Fisiológico
20.
J Exp Bot ; 63(8): 3173-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357599

RESUMO

The relationship between asparagine metabolism and protein concentration was investigated in soybean seed. Phenotyping of a population of recombinant inbred lines adapted to Illinois confirmed a positive correlation between free asparagine levels in developing seeds and protein concentration at maturity. Analysis of a second population of recombinant inbred lines adapted to Ontario associated the elevated free asparagine trait with two of four quantitative trait loci determining population variation for protein concentration, including a major one on chromosome 20 (linkage group I) which has been reported in multiple populations. In the seed coat, levels of asparagine synthetase were high at 50 mg and progressively declined until 150 mg seed weight, suggesting that nitrogenous assimilates are pre-conditioned at early developmental stages to enable a high concentration of asparagine in the embryo. The levels of asparaginase B1 showed an opposite pattern, being low at 50 mg and progressively increased until 150 mg, coinciding with an active phase of storage reserve accumulation. In a pair of genetically related cultivars, ∼2-fold higher levels of asparaginase B1 protein and activity in seed coat, were associated with high protein concentration, reflecting enhanced flux of nitrogen. Transcript expression analyses attributed this difference to a specific asparaginase gene, ASPGB1a. These results contribute to our understanding of the processes determining protein concentration in soybean seed.


Assuntos
Asparagina/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Asparaginase/genética , Asparaginase/metabolismo , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Western Blotting , Regulação da Expressão Gênica de Plantas , Endogamia , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Glycine max/enzimologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...