Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 67(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981556

RESUMO

Objective. Obtaining the intrinsic dose distributions in particle therapy is a challenging problem that needs to be addressed by imaging algorithms to take advantage of secondary particle detectors. In this work, we investigate the utility of deep learning methods for achieving direct mapping from detector data to the intrinsic dose distribution.Approach. We performed Monte Carlo simulations using GATE/Geant4 10.4 simulation toolkits to generate a dataset using human CT phantom irradiated with high-energy protons and imaged with compact in-beam PET for realistic beam delivery in a single-fraction (∼2 Gy). We developed a neural network model based on conditional generative adversarial networks to generate dose maps conditioned on coincidence distributions in the detector. The model performance is evaluated by the mean relative error, absolute dose fraction difference, and shift in Bragg peak position.Main results. The relative deviation in the dose and range of the distributions predicted by the model from the true values for mono-energetic irradiation between 50 and 122 MeV lie within 1% and 2%, respectively. This was achieved using 105coincidences acquired five minutes after irradiation. The relative deviation in the dose and range for spread-out Bragg peak distributions were within 1% and 2.6% uncertainties, respectively.Significance. An important aspect of this study is the demonstration of a method for direct mapping from detector counts to dose domain using the low count data of compact detectors suited for practical implementation in particle therapy. Including additional prior information in the future can further expand the scope of our model and also extend its application to other areas of medical imaging.


Assuntos
Aprendizado Profundo , Terapia com Prótons , Elétrons , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Terapia com Prótons/métodos , Prótons
2.
Phys Med Biol ; 60(12): 4635-49, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26020610

RESUMO

The coincidence time resolution (CTR) becomes a key parameter of 511 keV gamma detection in time of flight positron emission tomography (TOF-PET). This is because additional information obtained through timing leads to a better noise suppression and therefore a better signal to noise ratio in the reconstructed image. In this paper we present the results of CTR measurements on two different SiPM technologies from FBK coupled to LSO:Ce codoped 0.4%Ca crystals. We compare the measurements performed at two separate test setups, i.e. at CERN and at FBK, showing that the obtained results agree within a few percent. We achieve a best CTR value of 85 ± 4 ps FWHM for 2 × 2 × 3 mm(3) LSO:Ce codoped 0.4%Ca crystals, thus breaking the 100 ps barrier with scintillators similar to LSO:Ce or LYSO:Ce. We also demonstrate that a CTR of 140 ± 5 ps can be achieved for longer 2 × 2 × 20 mm(3) crystals, which can readily be implemented in the current generation PET systems to achieve the desired increase in the signal to noise ratio.


Assuntos
Cálcio/química , Cério/química , Processamento de Imagem Assistida por Computador/métodos , Lutécio/química , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Contagem de Cintilação/instrumentação , Silicatos/química , Cálcio/efeitos da radiação , Cério/efeitos da radiação , Câmaras gama , Aumento da Imagem , Lutécio/efeitos da radiação , Razão Sinal-Ruído , Silicatos/efeitos da radiação , Fatores de Tempo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...