Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 120(10): 16750-16759, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31081968

RESUMO

Bioactive scaffolds that can increase transplanted cell survival time at the defect site have a great promising potential to use clinically since tissue regeneration or secretions crucially depend on the transplanted cell survival. In this study embedded basic fibroblast growth factor (bFGF)-polycaprolactone-polyvinylidene fluoride (PCL-PVDF) hybrid was designed and fabricated by electrospinning as a bio-functional nanofibrous scaffold for bone tissue engineering. After morphological characterization of the PCL-PVDF (bFGF) scaffold, nanofibers biocompatibility was investigated by culturing of the human induced pluripotent stem cells (iPSCs). Then, the bone differentiation capacity of the iPSCs was evaluated when grown on the PCL-PVDF and PCL-PVDF (bFGF) scaffolds in comparison with culture plate as a control using evaluating of the common osteogenic markers. The viability assay displayed a significant increase in iPSCs survival rate when grown on the bFGF content scaffold. The highest alkaline phosphatase activity and mineralization were detected in the iPSCs while grown on the PCL-PVDF (bFGF) scaffolds. Obtained results from gene and protein expression were also demonstrated the higher osteoinductive property of the bFGF content scaffold compared with the scaffold without it. According to the results, the release of bFGF from PCL-PVDF nanofibers increased survival and proliferation rate of the iPSCs, which followed by an increase in its osteogenic differentiation potential. Taking together, PCL-PVDF (bFGF) nanofibrous scaffold demonstrated that can be noted as a promising candidate for treating the bone lesions by tissue engineering products.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Osteogênese/efeitos dos fármacos , Poliésteres/química , Polivinil/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Fator 2 de Crescimento de Fibroblastos/química , Fraturas Ósseas/terapia , Humanos , Camundongos , Nanocompostos/química , Engenharia Tecidual/métodos
2.
Biochim Biophys Acta Gene Regul Mech ; 1860(9): 973-982, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28739310

RESUMO

Testis specific gene antigen 10 (TSGA10) is a cancer testis antigen involved in the process of spermatogenesis. TSGA10 could also play an important role in the inhibition of angiogenesis by preventing nuclear localization of HIF-1α. Although it has been shown that TSGA10 messenger RNA (mRNA) is mainly expressed in testis and some tumors, the transcription pattern and regulatory mechanisms of this gene remain largely unknown. Here, we report that human TSGA10 comprises at least 22 exons and generates four different transcript variants. It was identified that using two distinct promoters and splicing of exons 4 and 7 produced these transcript variants, which have the same coding sequence, but the sequence of 5'untanslated region (5'UTR) is different between them. This is significant because conserved regulatory RNA elements like upstream open reading frame (uORF) and putative internal ribosome entry site (IRES) were found in this region which have different combinations in each transcript variant and it may influence translational efficiency of them in normal or unusual environmental conditions like hypoxia. To indicate the transcription pattern of TSGA10 in breast cancer, expression of identified transcript variants was analyzed in 62 breast cancer samples. We found that TSGA10 tends to express variants with shorter 5'UTR and fewer uORF elements in breast cancer tissues. Our study demonstrates for the first time the expression of different TSGA10 transcript variants in testis and breast cancer tissues and provides a first clue to a role of TSGA10 5'UTR in regulation of translation in unusual environmental conditions like hypoxia.


Assuntos
Regiões 5' não Traduzidas/genética , Neoplasias da Mama/genética , Variação Genética/genética , Proteínas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Testículo/metabolismo , Proteínas do Citoesqueleto , Éxons/genética , Feminino , Humanos , Masculino , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Espermatogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...