Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res Commun ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709372

RESUMO

Pasteurella multocida is affecting a multitude of animals and severely affects livestock production. Existing vaccines are mostly chemically inactivated and do not lead to wide protection. Irradiated vaccines are enjoying a renaissance and the concept of "replication defficient but metabolically active" vaccines was recently evaluated in several vaccine trials. P. multocida was isolated from the nasal swab, blood, and lung swab samples from infected rabbits. Gamma irradiation of P. multocida for inhibition of replication was evaluated at an optimized irradiation dose of 10 Kgy established. Four groups of rabbits were (mock) vaccinated with a commercial P. multocida vaccine and three irradiated formulations as liquid, lyophilized formulations with added Trehalose and lyophilized-Trehalose with an "activation" culturing the irradiated bacteria for 24 in broth. Evaluation of humoral immune response by ELISA showed that all three irradiated vaccines produced an effective, protective, and continued IgG serum level after vaccination and bacterial challenge. The IFN-γ expression is maintained at a normal level, within each individual group however, the lyophilized trehalose irradiated vaccine showed peak mean of IFN-γ titer at one week after booster dose (day 21) which was statistically significant. Cumulatively, the results of this study show that gamma-irradiated P. multocida vaccines are safe and protect rabbits against disease. Moreover, Rabbits' immunization with the three irradiated formulations avoided adverse side effects as compared to commercial polyvalent vaccine, the body weight gain for the irradiated vaccine groups indicates less stress compared to the commercial polyvalent vaccine.

2.
World J Virol ; 13(1): 88164, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38616859

RESUMO

BACKGROUND: Hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus 1 (HIV-1) are the most epidemic blood-borne viruses, posing threats to human health and causing economic losses to nations for combating the infection transmission. The diagnostic methodologies that depend on the detection of viral nucleic acids are much more expensive, but they are more accurate than serological testing. AIM: To develop a rapid, cost-effective, and accurate diagnostic multiplex polymerase chain reaction (PCR) assay for simultaneous detection of HCV, HBV, and HIV-1. METHODS: The design of the proposed PCR assay targets the amplification of a short conserved region featured with a distinguishable melting profile and electrophoretic molecular weight inside each viral genome. Therefore, this diagnostic method will be appropriate for application in both conventional (combined with electrophoresis) and real-time PCR facilities. Confirmatory in silico investigations were conducted to prove the capability of the approached PCR assay to detect variants of each virus. Then, Egyptian isolates of each virus were subjected to the wet lab examination using the given diagnostic assay. RESULTS: The in silico investigations confirmed that the PCR primers can match many viral variants in a multiplex PCR assay. The wet lab experiment proved the efficiency of the assay in distinguishing each viral type through high-resolution melting analysis. Compared to related published assays, the proposed assay in the current study is more sensitive and competitive with many expensive PCR assays. CONCLUSION: This study provides a simple, cost-effective, and sensitive diagnostic PCR assay facilitating the detection of the most epidemic blood-borne viruses; this makes the proposed assay promising to be substitutive for the mistakable and cheap serological-based assays.

3.
Vet Res Commun ; 48(1): 245-257, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37642819

RESUMO

Exposure to gamma rays from cobalt 60 (Co60) can induce a complete inactivation of Mannheimia haemolytica. The inactivated bacterial pathogen is a potential vaccine candidate for immunization of ruminants such as sheep. The subcutaneous administration of irradiated vaccine in a two-dose regimen (4.0 × 109 colony forming unit (CFU) per dose) results in no mortality in any of the vaccinated sheep during immunization and after subsequent challenge of the live bacteria of the same strain of M. haemolytica. A significant rise in serum IgG titer, detected through ELISA, is observed after the passage of two weeks from the inoculation of the first dose whereas, the peak of the mean serum antibody titer occurred after two weeks of booster dose. The vaccination does not bring significant change to the IFN-γ levels in serum. The bacterial challenge of the vaccinated sheep does not induce a further seroconversion relative to serum antibody titer. In conclusion, the vaccinated sheep are protected by the elevated IgG titer and increased levels of IL-4 (Th-2 response) compared to the non-vaccinated sheep. Radiation technology can provide the opportunity for mass production of immunologically safe vaccines against animal and zoonotic diseases. Ethics Approval by the National Research Center Ethics Committee (Trial Registration Number (TRN) no 13,602,023, 13/5/2023) was obtained.


Assuntos
Mannheimia haemolytica , Doenças dos Ovinos , Animais , Ovinos , Raios gama , Vacinas Bacterianas , Vacinação/veterinária , Imunoglobulina G , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/microbiologia
4.
Vet World ; 15(5): 1261-1268, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35765479

RESUMO

Background and Aim: Vaccines are one of the important tools for fighting diseases and limiting their spread. The development of vaccines with high efficacy against diseases is essential. Ionizing radiation is the method used for the preparation of the irradiated gamma Mannheimia haemolytica vaccine. The study aimed to measure the metabolic activity and electron microscopic examination of the irradiated bacterial cells and immunological efficiency of different preparations of the irradiated M. haemolytica vaccine. Materials and Methods: The irradiated vaccines were prepared in three forms at a dose of 2×109 colony-forming unit (CFU) (irradiated M. haemolytica, trehalose irradiated M. haemolytica, and trehalose lyophilized irradiated M. haemolytica). The formalin-killed vaccine was prepared at a dose of 2×109 CFU. Scanning electron microscopy was used to determine the difference between the non-irradiated bacterial cells and the bacterial cells exposed to gamma radiation. The metabolic activity of the irradiated bacterial cells was measured using the Alamar blue technique. Rabbits were divided into five groups (control, vaccinated groups with the formalin-killed vaccine, irradiated bacterial cells without trehalose, trehalose irradiated bacteria, and trehalose lyophilized irradiated bacterial cells). The rabbits were subcutaneously inoculated twice in 2-week intervals. Enzyme-linked immunosorbent assay, interferon-gamma (IFNγ), and interleukin 4 (IL4) assays were used to evaluate the vaccines' immunological efficiency in rabbits. Results: The metabolic activity tests showed that the bacterial cells exposed to gamma radiation at the lowest lethal dose have metabolic activity. The difference in the metabolic activity between preparations of the irradiated bacterial cells varied according to the cell concentration and incubation time. The highest level of metabolic activity was 8 h after incubation in the nutrient broth medium compared with 4 and 18 h. The scanning electron microscopy of irradiated bacterial cells showed a cavity at the bacterial cell center without rupture of the surrounding cell membrane compared to the non-irradiated bacterial cells. The antibody level in the groups vaccinated with the different preparations of the irradiated bacterial cells was high compared with the control and formalin-killed vaccine groups. The level of the IFNγ showed an increase after the second dose in the group vaccinated with irradiated bacterial cells without trehalose compared with the other groups. The IL4 level in the vaccinated groups with the irradiated bacterial cells without trehalose, irradiated bacterial cells with trehalose, and trehalose lyophilized irradiated bacterial cells were at a high level when compared with the formalin-killed vaccinated group and control group after the second inoculation. Conclusion: The irradiated M. haemolytica vaccine provides a wide range of humoral and cellular immunity. This study showed high immunological efficiency in rabbits inoculated with the irradiated M. haemolytica vaccine that was shown in the high levels of antibodies (IFNγ and IL4) compared with the group treated with the formalin-killed vaccine. The second dose of irradiated M. haemolytica vaccine is an immune booster that gives the irradiated vaccine a long-acting immunological efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...