Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 603: 604-614, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34217948

RESUMO

HYPOTHESIS: The properties of the oxidized surface for common materials, such as silicon and titanium, are known to be markedly different from the reduced surface. We hypothesize that surface-oxidized aluminum gallium nitride ((oxidized-AlGaN)/GaN) surface charge behavior is different to unoxidized AlGaN (with ultrathin native oxide only), which can be validated via surfactant adsorption. Understanding these differences will explain why (oxidized-AlGaN)/GaN-based sensors are better performing than AlGaN ones, which has been previously demonstrated but not understood. EXPERIMENTS: The surface of an AlGaN/GaN structure was oxidized with hot piranha solution and oxygen plasma. AFM force measurements and imaging were performed to probe the charge properties of the surface in aqueous solutions of varying pH containing only an acid or base, or with an added ionic surfactant: cationic cetyltrimethylammonium bromide (CTAB) or anionic sodium dodecylsulfate (SDS). FINDINGS: The (oxidized-AlGaN)/GaN surface is positively charged at pH 4 and pH 5.5, although pH 5.5 should be close to the isoelectric point of the surface. The surface is negatively charged at pH 10 and pH 12, and sufficiently charged to attract cooperative adsorption of CTAB aggregates at pH 12. At pH 2, the evidence is inconclusive, but the surface is most likely positively charged. Compared to unoxidized AlGaN, the (oxidized-AlGaN)/GaN surface shows a wider range of surface charge magnitude over pH values between 2 and 12. This suggests that the (oxidized-AlGaN)/GaN surface has a higher surface hydroxyl group density than unoxidized AlGaN, which explains the higher sensitivity for pH sensors based on (oxidized-AlGaN)/GaN structures.


Assuntos
Gálio , Compostos de Alumínio , Concentração de Íons de Hidrogênio , Dodecilsulfato de Sódio
2.
J Colloid Interface Sci ; 583: 331-339, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007589

RESUMO

HYPOTHESIS: The net surface charge of AlGaN/GaN structures, where AlGaN is in contact with the solution, is controlled by the pH-dependent protonation and deprotonation of the surface hydroxyl groups and possibly the electron-deficient surface electronic states. We hypothesize that atomic force microscopy (AFM) force measurements of ionic surfactant adsorption can reveal how the AlGaN surface properties vary with pH. EXPERIMENTS: AFM force curves and images were used to probe the AlGaN/solution interface in water as a function of pH, and with added cationic surfactant cetyltrimethylammonium bromide (CTAB) or anionic surfactant sodium dodecylsulfate (SDS). FINDINGS: The AlGaN/solution interface is negatively charged at pH 12, has an isoelectric point near pH 5.5, and is positively charged at pH values less than 5.5. Surfactant adsorption data suggests AlGaN surface is somewhat hydrophobic at acidic pH. Compared to gallium nitride (GaN), at pH 2, AlGaN has a lower charge density and hydrophobicity, but at other values of pH, the surface properties of AlGaN and GaN are similar.

3.
IEEE J Biomed Health Inform ; 24(6): 1703-1716, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31670688

RESUMO

The analysis of the dynamic behavior of cells in time-lapse microscopy sequences requires the development of reliable and automatic tracking methods capable of estimating individual cell states and delineating the lineage trees corresponding to the tracks. In this paper, we propose a novel approach, i.e., an ant colony inspired multi-Bernoulli filter, to handle the tracking of a collection of cells within which mitosis, morphological change and erratic dynamics occur. The proposed technique treats each ant colony as an independent one in an ant society, and the existence probability of an ant colony and its density distribution approximation are derived from the individual pheromone field and the corresponding heuristic information for the approximation to the multi-Bernoulli parameters. To effectively guide ant foraging between consecutive frames, a dual prediction mechanism is proposed for the ant colony and its pheromone field. The algorithm performance is tested on challenging datasets with varying population density, frequent cell mitosis and uneven motion over time, demonstrating that the algorithm outperforms recently reported approaches.


Assuntos
Algoritmos , Rastreamento de Células/métodos , Microscopia/métodos , Imagem com Lapso de Tempo/métodos , Linhagem Celular , Movimento Celular/fisiologia , Humanos , Mitose/fisiologia , Modelos Biológicos
4.
J Colloid Interface Sci ; 556: 680-688, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499439

RESUMO

HYPOTHESIS: The surface charge of gallium nitride (GaN) in contact with solution is controlled by pH via surface protonation and deprotonation, similar to silica. Ionic surfactants adsorb on surfaces via electrostatic and hydrophobic interactions and can be utilized to reflect the surface charge of GaN. EXPERIMENTS: The surface charge properties of Ga-polar GaN in solution were probed as a function of pH using atomic force microscopy (AFM). AFM soft-contact images and force curves were used to study the pH-dependent adsorption of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium dodecylsulfate (SDS) on GaN surfaces. To further confirm the AFM results, GaN/AlGaN/GaN heterostructure-based ion sensing devices were used to measure the surfactant adsorption over the same pH range. FINDINGS: SDS aggregates adsorb on GaN below pH 2.75 while CTAB aggregates adsorb above pH 10. This shows that the GaN surface carries substantial net positive charge at low pH, and negative charge at high pH. There is no clear SDS or CTAB adsorption on the GaN surface between pH 3 and 9.75, which indicates the surface is weakly charged. GaN/AlGaN/GaN heterostructure-based devices confirm these results, and demonstrate the utility of these devices for measuring surfactant adsorption.

5.
Anal Chim Acta ; 987: 105-110, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28916033

RESUMO

We demonstrate highly selective and sensitive potentiometric ion sensors for calcium ion detection, operated without the use of a reference electrode. The sensors consist of AlGaN/GaN heterostructure-based transistor devices with chemical functionalisation of the gate area using poly (vinylchloride)-based (PVC) membranes having high selectivity towards calcium ions, Ca2+. The sensors exhibited stable and rapid responses when introduced to various concentrations of Ca2+. In both 0.01 M KCl and 0.01 M NaCl ionic strength buffer solutions, the sensors exhibited near Nernstian responses with detection limits of less than 10-7 M, and a linear response range between 10-7-10-2 M. Also, detection limits of less than 10-6 M were achieved for the sensors in both 0.01 M MgCl2 and 0.01 M LiCl buffer solutions. AlGaN/GaN-based devices for Ca2+ detection demonstrate excellent selectivity and response range for a wide variety of applications. This work represents an important step towards multi-ion sensing using arrays of ion-selective field effect transistor (ISFET) devices.

6.
J Opt Soc Am A Opt Image Sci Vis ; 20(5): 867-75, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12747434

RESUMO

An extremely accurate but simple asymptotic description (with known error) is obtained for the path of a ray propagating over a curved Earth with radial variations in refractive index. The result is sufficiently simple that analytic solutions for the path can be obtained for linear and quadratic index profiles. As well as rendering the inverse problem trivial for these profiles, this formulation shows that images are uniformly magnified in the vertical direction when viewed through a quadratic refractive-index profile. Nonuniform vertical distortions occur for higher-order refractive-index profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...