Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 14(1): 2712, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169774

RESUMO

Transcriptional regulation is commonly governed by alternative promoters. However, the regulatory architecture in alternative and reference promoters, and how they differ, remains elusive. In 100 CAGE-seq libraries from hepatocellular carcinoma patients, here we annotate 4083 alternative promoters in 2926 multi-promoter genes, which are largely undetected in normal livers. These genes are enriched in oncogenic processes and predominantly show association with overall survival. Alternative promoters are narrow nucleosome depleted regions, CpG island depleted, and enriched for tissue-specific transcription factors. Globally tumors lose DNA methylation. We show hierarchical retention of intragenic DNA methylation with CG-poor regions rapidly losing methylation, while CG-rich regions retain it, a process mediated by differential SETD2, H3K36me3, DNMT3B, and TET1 binding. This mechanism is validated in SETD2 knockdown cells and SETD2-mutated patients. Selective DNA methylation loss in CG-poor regions makes the chromatin accessible for alternative transcription. We show alternative promoters can control tumor transcriptomes and their regulatory architecture.


Assuntos
Neoplasias Hepáticas , Transcriptoma , Humanos , Transcriptoma/genética , Cromatina , Nucleossomos/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética , Neoplasias Hepáticas/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
2.
Nat Genet ; 54(7): 1037-1050, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789323

RESUMO

Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Genômica , Sequências Reguladoras de Ácido Nucleico , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Cromatina/genética , Genoma/genética , Humanos , Camundongos , Anotação de Sequência Molecular , Organogênese/genética , Sequências Reguladoras de Ácido Nucleico/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
J Hepatol ; 74(5): 1132-1144, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33276026

RESUMO

BACKGROUND & AIMS: Gallbladder cancer (GBC) is the most common type of biliary tract cancer, but the molecular mechanisms involved in gallbladder carcinogenesis remain poorly understood. In this study, we applied integrative genomics approaches to characterise GBC and explore molecular subtypes associated with patient survival. METHODS: We profiled the mutational landscape of GBC tumours (whole-exome sequencing on 92, targeted sequencing on 98, in total 190 patients). In a subset (n = 45), we interrogated the matched transcriptomes, DNA methylomes, and somatic copy number alterations. We explored molecular subtypes identified through clustering tumours by genes whose expression was associated with survival in 47 tumours and validated subtypes on 34 publicly available GBC cases. RESULTS: Exome analysis revealed TP53 was the most mutated gene. The overall mutation rate was low (median 0.82 Mut/Mb). APOBEC-mediated mutational signatures were more common in tumours with higher mutational burden. Aflatoxin-related signatures tended to be highly clonal (present in ≥50% of cancer cells). Transcriptome-wide survival association analysis revealed a 95-gene signature that stratified all GBC patients into 3 subtypes that suggested an association with overall survival post-resection. The 2 poor-survival subtypes were associated with adverse clinicopathologic features (advanced stage, pN1, pM1), immunosuppressive micro-environments (myeloid-derived suppressor cell accumulation, extensive desmoplasia, hypoxia) and T cell dysfunction, whereas the good-survival subtype showed the opposite features. CONCLUSION: These data suggest that the tumour micro-environment and immune profiles could play an important role in gallbladder carcinogenesis and should be evaluated in future clinical studies, along with mutational profiles. LAY SUMMARY: Gallbladder cancer is highly fatal, and its causes are poorly understood. We evaluated gallbladder tumours to see if there were differences between tumours in genetic information such as DNA and RNA. We found evidence of aflatoxin exposure in these tumours, and immune cells surrounding the tumours were associated with survival.


Assuntos
Carcinogênese , Neoplasias da Vesícula Biliar , Transcriptoma , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/genética , Aflatoxinas/toxicidade , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinógenos/toxicidade , Variações do Número de Cópias de DNA , Feminino , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/mortalidade , Neoplasias da Vesícula Biliar/patologia , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Análise de Sobrevida , Sequenciamento do Exoma
4.
iScience ; 23(4): 101008, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32268280

RESUMO

HOTAIR was proposed to regulate either HoxD cluster genes in trans or HoxC cluster genes in cis, a mechanism that remains unclear. We have identified a 32-nucleotide conserved noncoding element (CNE) as HOTAIR ancient sequence that likely originated at the root of vertebrate. The second round of whole-genome duplication resulted in one copy of the CNE within HOTAIR and another copy embedded in noncoding transcript of HOXD11. Paralogous CNEs underwent compensatory mutations, exhibit sequence complementarity with respect to transcripts directionality, and have high affinity in vitro. The HOTAIR CNE resembled a poised enhancer in stem cells and an active enhancer in HOTAIR-expressing cells. HOTAIR expression is positively correlated with HOXC11 in cis and negatively correlated with HOXD11 in trans. We propose a dual modality of HOTAIR regulation where transcription of HOTAIR and its embedded enhancer regulates HOXC11 in cis and sequence complementarity between paralogous CNEs suggests HOXD11 regulation in trans.

5.
Nat Commun ; 11(1): 168, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924754

RESUMO

Variations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5'-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes. 5'-TOP/TCT initiation is intertwined with canonical initiation and used divergently in hundreds of dual-initiation promoters during maternal to zygotic transition. Dual-initiation in snoRNA host genes selectively generates host and snoRNA with often different spatio-temporal expression. Dual-initiation promoters are pervasive in human and fruit fly, reflecting evolutionary conservation. We propose that dual-initiation on shared promoters represents a composite promoter architecture, which can function both coordinately and divergently to diversify RNAs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Regiões Promotoras Genéticas/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica , Animais , Sequência de Bases , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Humanos , RNA/genética , RNA/fisiologia , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/fisiologia , Elementos Reguladores de Transcrição , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Zigoto
6.
Hepatology ; 71(1): 196-213, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211856

RESUMO

Cholangiocarcinoma (CCA) mortality rates are increasing as a result of rising incidence and limited curative treatment(s) for patients with advanced disease. NOTCH pathway reactivation has been reported in biliary malignancies to conflicting degrees, hindering prioritization of key therapeutic targets within the network and identification of candidate responder patients for NOTCH-directed therapies. We analyzed genomic data from 341 patients with CCA and identified NOTCH1 significantly increased in a subgroup characterized by distinct stromal infiltration. Network-wide imbalance of the NOTCH pathway was seen in CCA, including correlation of NOTCH1 with NOTCH3 and NOTCH ligands. Given the diversity of observed NOTCH receptor engagement, γ-secretase modulation was rationalized as a therapeutic option. Indeed, subcutaneous transplantation of sensitive and resistant CCA cell lines pretreated with a γ-secretase inhibitor (GSi) cocktail demonstrated the antineoplastic effects of GSi in a subset of CCA and led to the development of a 225-gene responder signature. This signature was validated in an independent cohort of 119 patients. Further, this signature was enriched in liver tumors initiated by hydrodynamic injections of activated-NOTCH as compared with the AKT-RAS-driven tumors. Candidate GSi-responder patients were characterized by distinct transcriptomes overlapping with previous hepatobiliary metastasis and stemness, unique stromal properties, and dysfunctional intratumoral immune infiltration. Pan-cancer analysis identified 41.9% of cancer types to harbor prospective GSi-responder patients, which was adapted into a 20-gene GSi-sensitivity score metric capable of discriminating nanomolar versus micromolar sensitivity to a cell-permeable GSi (Z-LLNle-CHO) across 60 diverse tumor lines (area under the curve = 1). Conclusion: We have established a GSi-responder signature with evidence across several patient cohorts, as well as in vitro and in vivo models, to enable precision medicine application of NOTCH-directed therapy in CCA as well as prospectively across diverse malignancies.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/etiologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/etiologia , Dibenzazepinas/farmacologia , Dibenzazepinas/uso terapêutico , Fluorenos/farmacologia , Fluorenos/uso terapêutico , Cetonas/farmacologia , Cetonas/uso terapêutico , Receptores Notch/efeitos dos fármacos , Receptores Notch/fisiologia , Linhagem Celular Tumoral , Humanos , Resultado do Tratamento
7.
Development ; 145(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29695612

RESUMO

Neural stem cells (NSCs) in the adult vertebrate brain are found in a quiescent state and can preserve long-lasting progenitor potential (stemness). Whether and how these two properties are linked, and to what extent they can be independently controlled by NSC maintenance pathways, is unresolved. We have previously identified Notch3 signalling as a major quiescence-promoting pathway in adult NSCs of the zebrafish pallium. We now show that Notch3 also controls NSC stemness. Using parallel transcriptomic characterizations of notch3 mutant NSCs and adult NSC physiological states, we demonstrate that a set of potentially direct Notch3 target genes distinguishes quiescence and stemness control. As a proof of principle, we focus on one 'stemness' target, encoding the bHLH transcription factor Hey1, that has not yet been analysed in adult NSCs. We show that abrogation of Hey1 function in adult pallial NSCs in vivo, including quiescent NSCs, leads to their differentiation without affecting their proliferation state. These results demonstrate that quiescence and stemness are molecularly distinct outputs of Notch3 signalling, and identify Hey1 as a major Notch3 effector controlling NSC stemness in the vertebrate adult brain.


Assuntos
Encéfalo/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Receptor Notch3/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular/genética , Proliferação de Células/fisiologia , Técnicas de Inativação de Genes , Neurogênese/genética , Receptor Notch3/genética , Transdução de Sinais/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Gastroenterology ; 154(4): 1066-1079.e5, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29113809

RESUMO

BACKGROUND & AIMS: Cholangiocarcinomas (CCA) are resistant to chemotherapy, so new therapeutic agents are needed. We performed a screen to identify small-molecule compounds that are active against CCAs. Levels of microRNA 21 (MIR21 or miRNA21) are increased in CCAs. We investigated whether miRNA21 mediates resistance of CCA cells and organoids to HSP90 inhibitors. METHODS: We performed a high-throughput screen of 484 small-molecule compounds to identify those that reduced viability of 6 human CCA cell lines. We tested the effects of HSP90 inhibitors on cells with disruption of the MIR21 gene, cells incubated with MIR21 inhibitors, and stable cell lines with inducible expression of MIR21. We obtained CCA biopsies from patients, cultured them as organoids (patient-derived organoids). We assessed their architecture, mutation and gene expression patterns, response to compounds in culture, and when grown as subcutaneous xenograft tumors in mice. RESULTS: Cells with IDH1 and PBRM1 mutations had the highest level of sensitivity to histone deacetylase inhibitors. HSP90 inhibitors were effective in all cell lines, irrespective of mutations. Sensitivity of cells to HSP90 inhibitors correlated inversely with baseline level of MIR21. Disruption of MIR21 increased cell sensitivity to HSP90 inhibitors. CCA cells that expressed transgenic MIR21 were more resistant to HSP90 inhibitors than cells transfected with control vectors; inactivation of MIR21 in these cells restored sensitivity to these agents. MIR21 was shown to target the DnaJ heat shock protein family (Hsp40) member B5 (DNAJB5). Transgenic expression of DNAJB5 in CCA cells that overexpressed MIR21 re-sensitized them to HSP90 inhibitors. Sensitivity of patient-derived organoids to HSP90 inhibitors, in culture and when grown as xenograft tumors in mice, depended on expression of miRNA21. CONCLUSIONS: miRNA21 appears to mediate resistance of CCA cells to HSP90 inhibitors by reducing levels of DNAJB5. HSP90 inhibitors might be developed for the treatment of CCA and miRNA21 might be a marker of sensitivity to these agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , MicroRNAs/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Proteínas de Ligação a DNA , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Mutação , Proteínas Nucleares/genética , Organoides , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/genética , Transfecção , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Hepatology ; 68(3): 949-963, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29278425

RESUMO

Intrahepatic cholangiocarcinoma remains a highly heterogeneous malignancy that has eluded effective patient stratification to date. The extent to which such heterogeneity can be influenced by individual driver mutations remains to be evaluated. Here, we analyzed genomic (whole-exome sequencing, targeted exome sequencing) and epigenomic data from 496 patients and used the three most recurrently mutated genes to stratify patients (IDH, KRAS, TP53, "undetermined"). Using this molecular dissection approach, each subgroup was determined to possess unique mutational signature preferences, comutation profiles, and enriched pathways. High-throughput drug repositioning in seven patient-matched cell lines, chosen to reflect the genetic alterations specific for each patient group, confirmed in silico predictions of subgroup-specific vulnerabilities linked to enriched pathways. Intriguingly, patients lacking all three mutations ("undetermined") harbored the most extensive structural alterations, while isocitrate dehydrogenase mutant tumors displayed the most extensive DNA methylome dysregulation, consistent with previous findings. CONCLUSION: Stratification of intrahepatic cholangiocarcinoma patients based on occurrence of mutations in three classifier genes (IDH, KRAS, TP53) revealed unique oncogenic programs (mutational, structural, epimutational) that influence pharmacologic response in drug repositioning protocols; this genome dissection approach highlights the potential of individual mutations to induce extensive molecular heterogeneity and could facilitate advancement of therapeutic response in this dismal disease. (Hepatology 2018).


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Isocitrato Desidrogenase/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Análise Mutacional de DNA , Epigênese Genética , Humanos , Sequenciamento do Exoma
10.
Gastroenterology ; 153(2): 488-494.e1, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28428144

RESUMO

BACKGROUND & AIMS: Aflatoxin, which causes hepatocellular carcinoma, may also cause gallbladder cancer. We investigated whether patients with gallbladder cancer have higher exposure to aflatoxin than patients with gallstones. METHODS: We measured aflatoxin B1 (AFB1)-lysine adducts in plasma samples from the Shanghai Biliary Tract Cancer case-control study, conducted from 1997 through 2001. We calculated age- and sex-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) and the population-attributable fraction for 209 patients with gallbladder cancer and gallstones vs 250 patients with gallstones without cancer (controls). In 54 patients with gallbladder cancer, tumor tissue was examined for the R249S mutation in TP53, associated with aflatoxin exposure, through targeted sequencing. RESULTS: The AFB1-lysine adduct was detected in 67 (32%) of 209 patients with gallbladder cancer and 37 (15%) of the 250 controls (χ2 P < .0001), almost threefold more patients with gallbladder cancer than controls (OR, 2.71; 95% CI, 1.70-4.33). Among participants with detectable levels of AFB1-lysine, the median level of AFB1-lysine was 5.4 pg/mg in those with gallbladder cancer, compared with 1.2 pg/mg in controls. For patients in the fourth quartile of AFB1-lysine level vs the first quartile, the OR for gallbladder cancer was 7.61 (95% CI, 2.01-28.84). None of the 54 gallbladder tumors sequenced were found to have the R249S mutation in TP53. The population-attributable fraction for cancer related to aflatoxin was 20% (95% CI, 15%-25%). CONCLUSIONS: In a case-control study of patients with gallbladder cancer and gallstones vs patients with gallstones without cancer, we associated exposure to aflatoxin (based on plasma level of AFB1-lysine) with gallbladder cancer. Gallbladder cancer does not appear associate with the R249S mutation in TP53. If aflatoxin is a cause of gallbladder cancer, it may have accounted for up to 20% of the gallbladder cancers in Shanghai, China, during the study period, and could account for an even higher proportion in high-risk areas. If our findings are verified, reducing aflatoxin exposure might reduce the incidence of gallbladder cancer.


Assuntos
Aflatoxina B1/sangue , Aflatoxinas/toxicidade , Neoplasias da Vesícula Biliar/induzido quimicamente , Cálculos Biliares/complicações , Lisina/sangue , Venenos/toxicidade , Adulto , Idoso , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , China , Feminino , Neoplasias da Vesícula Biliar/sangue , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Cálculos Biliares/sangue , Genes p53 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fatores de Risco , Proteína Supressora de Tumor p53/genética
11.
Sci Rep ; 6: 33210, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628538

RESUMO

Pufferfish such as fugu and tetraodon carry the smallest genomes among all vertebrates and are ideal for studying genome evolution. However, comparative genomics using these species is hindered by the poor annotation of their genomes. We performed RNA sequencing during key stages of maternal to zygotic transition of Tetraodon nigroviridis and report its first developmental transcriptome. We assembled 61,033 transcripts (23,837 loci) representing 80% of the annotated gene models and 3816 novel coding transcripts from 2667 loci. We demonstrate the similarities of gene expression profiles between pufferfish and zebrafish during maternal to zygotic transition and annotated 1120 long non-coding RNAs (lncRNAs) many of which differentially expressed during development. The promoters for 60% of the assembled transcripts result validated by CAGE-seq. Despite the extreme compaction of the tetraodon genome and the dramatic loss of transposons, the length of lncRNA exons remain comparable to that of other vertebrates and a small set of lncRNAs appears enriched for transposable elements suggesting a selective pressure acting on lncRNAs length and composition. Finally, a set of lncRNAs are microsyntenic between teleost and vertebrates, which indicates potential regulatory interactions between lncRNAs and their flanking coding genes. Our work provides a fundamental molecular resource for vertebrate comparative genomics and embryogenesis studies.


Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , RNA Longo não Codificante/genética , Tetraodontiformes/genética , Transcriptoma , Animais , Genômica , Tetraodontiformes/crescimento & desenvolvimento
12.
Nucleic Acids Res ; 44(7): 3070-81, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26673698

RESUMO

MicroRNAs (miRNAs) play a major role in the post-transcriptional regulation of target genes, especially in development and differentiation. Our understanding about the transcriptional regulation of miRNA genes is limited by inadequate annotation of primary miRNA (pri-miRNA) transcripts. Here, we used CAGE-seq and RNA-seq to provide genome-wide identification of the pri-miRNA core promoter repertoire and its dynamic usage during zebrafish embryogenesis. We assigned pri-miRNA promoters to 152 precursor-miRNAs (pre-miRNAs), the majority of which were supported by promoter associated post-translational histone modifications (H3K4me3, H2A.Z) and RNA polymerase II (RNAPII) occupancy. We validated seven miR-9 pri-miRNAs by in situ hybridization and showed similar expression patterns as mature miR-9. In addition, processing of an alternative intronic promoter of miR-9-5 was validated by 5' RACE PCR. Developmental profiling revealed a subset of pri-miRNAs that are maternally inherited. Moreover, we show that promoter-associated H3K4me3, H2A.Z and RNAPII marks are not only present at pri-miRNA promoters but are also specifically enriched at pre-miRNAs, suggesting chromatin level regulation of pre-miRNAs. Furthermore, we demonstrated that CAGE-seq also detects 3'-end processing of pre-miRNAs on Drosha cleavage site that correlates with miRNA-offset RNAs (moRNAs) production and provides a new tool for detecting Drosha processing events and predicting pre-miRNA processing by a genome-wide assay.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Pequeno RNA não Traduzido/genética , Transcrição Gênica , Animais , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Histonas/metabolismo , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/análise , Precursores de RNA/metabolismo , Pequeno RNA não Traduzido/metabolismo , Ribonuclease III/metabolismo , Sítio de Iniciação de Transcrição , Peixe-Zebra/embriologia , Peixe-Zebra/genética
13.
Nature ; 507(7492): 381-385, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24531765

RESUMO

A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.


Assuntos
Regiões Promotoras Genéticas/genética , Sítio de Iniciação de Transcrição , Peixe-Zebra/genética , Animais , Sequência de Bases , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Metilação , Mães , Nucleossomos/genética , Iniciação da Transcrição Genética , Transcriptoma/genética , Peixe-Zebra/embriologia , Zigoto/metabolismo
14.
Epigenetics ; 9(3): 416-27, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24351654

RESUMO

It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of "chromatin-CGH") and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14-15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Cromatina/metabolismo , Fibroblastos/metabolismo , Duplicação Gênica , Fatores de Transcrição SOX9/genética , Células Cultivadas , Metilação de DNA , Feminino , Disgenesia Gonadal 46 XY/genética , Heterozigoto , Humanos , Masculino , Regiões Promotoras Genéticas , Fatores Sexuais
15.
PLoS One ; 8(11): e79501, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244513

RESUMO

Recent meta-analyses of schizophrenia genome-wide association studies (GWASs) have identified the CUB and SUSHI multiple domains 1 (CSMD1) gene as a statistically strong risk factor. CSMD1 is a complement control-related protein suggested to inhibit the classical complement pathway, being expressed in developing neurons. However, expression of CSMD1 is largely uncharacterized and relevance for behavioral phenotypes is not previously demonstrated. Here, we assess neuropsychological behaviors of a Csmd1 knockout (KO) mouse in a selection of standard behavioral tests. Deregulation of neuropsychological responses were observed in both the open field and the elevated plus maze tests, in which KO mice spent 55% and 33% less time than WT littermate mice in open areas, respectively. Altered behaviors were also observed in tail suspension and to higher acoustic stimuli, for which Csmd1 KO mice showed helplessness and moderate increase in startle amplitude, respectively. Furthermore, Csmd1 KO mice also displayed increased weight-gain and glucose tolerance, similar to a major phenotype of the metabolic syndrome that also has been associated to the human CSMD1 locus. Consistent with a role in the control of behaviors, Csmd1 was found highly expressed in the central nervous system (CNS), and with some expression in visceral fat and ovary, under tissue-specific control by a novel promoter-associated lncRNA. In summary, disruption of Csmd1 induces behaviors reminiscent of blunted emotional responses, anxiety and depression. These observations suggest an influence of the CSMD1 schizophrenia susceptibility gene on psychopathology and endophenotypes of the negative symptom spectra.


Assuntos
Predisposição Genética para Doença , Esquizofrenia/genética , Proteínas Supressoras de Tumor/genética , Animais , Comportamento Animal , Córtex Cerebral/metabolismo , Análise por Conglomerados , Feminino , Regulação da Expressão Gênica , Ordem dos Genes , Marcação de Genes , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Testes Neuropsicológicos , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esquizofrenia/metabolismo , Transcriptoma , Proteínas Supressoras de Tumor/metabolismo
16.
Genome Res ; 23(11): 1938-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002785

RESUMO

Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo. By using cap analysis of gene expression (CAGE), we mapped transcription initiation events at single nucleotide resolution across 12 stages of zebrafish development. These CAGE-based transcriptome maps reveal genome-wide rules of core promoter usage, structure, and dynamics, key to understanding the control of gene regulation during vertebrate ontogeny. They revealed the existence of multiple classes of pervasive intra- and intergenic post-transcriptionally processed RNA products and their developmental dynamics. Among these RNAs, we report splice donor site-associated intronic RNA (sRNA) to be specific to genes of the splicing machinery. For the identification of conserved features, we compared the zebrafish data sets to the first CAGE promoter map of Tetraodon and the existing human CAGE data. We show that a number of features, such as promoter type, newly discovered promoter properties such as a specialized purine-rich initiator motif, as well as sRNAs and the genes in which they are detected, are conserved in mammalian and Tetraodon CAGE-defined promoter maps. The zebrafish developmental promoterome represents a powerful resource for studying developmental gene regulation and revealing promoter features shared across vertebrates.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Purinas/metabolismo , Sítio de Iniciação de Transcrição , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Genes , Genoma , Filogenia , Regiões Promotoras Genéticas , RNA/genética , RNA/metabolismo , Capuzes de RNA/genética , Splicing de RNA , Transcriptoma , Vertebrados/genética
17.
Nature ; 477(7363): 207-10, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21832995

RESUMO

Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.


Assuntos
Gadus morhua/genética , Gadus morhua/imunologia , Genoma/genética , Sistema Imunitário/imunologia , Imunidade/genética , Animais , Evolução Molecular , Genômica , Hemoglobinas/genética , Imunidade/imunologia , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Masculino , Polimorfismo Genético/genética , Sintenia/genética , Receptores Toll-Like/genética
18.
FEBS Lett ; 581(9): 1881-90, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17434486

RESUMO

A complete understanding of protein and RNA structures and their interactions is important for determining the binding sites in protein-RNA complexes. Computational approaches exist for identifying secondary structural elements in proteins from atomic coordinates. However, similar methods have not been developed for RNA, due in part to the very limited structural data so far available. We have developed a set of algorithms for extracting and visualizing secondary and tertiary structures of RNA and for analyzing protein-RNA complexes. These algorithms have been implemented in a web-based program called PRI-Modeler (protein-RNA interaction modeler). Given one or more protein data bank files of protein-RNA complexes, PRI-Modeler analyzes the conformation of the RNA, calculates the hydrogen bond (H bond) and van der Waals interactions between amino acids and nucleotides, extracts secondary and tertiary RNA structure elements, and identifies the patterns of interactions between the proteins and RNAs. This paper presents PRI-Modeler and its application to the hydrogen bond and van der Waals interactions in the most representative set of protein-RNA complexes. The analysis reveals several interesting interaction patterns at various levels. The information provided by PRI-Modeler should prove useful for determining the binding sites in protein-RNA complexes. PRI-Modeler is accessible at http://wilab.inha.ac.kr/primodeler/, and supplementary materials are available in the analysis results section at http://wilab.inha.ac.kr/primodeler/.


Assuntos
Proteínas de Ligação a RNA/genética , RNA/análise , RNA/genética , Análise de Sequência/métodos , Software , Algoritmos , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...