Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(52): 112173-112183, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831256

RESUMO

Floating treatment islands (FTIs) offer effective solutions for stormwater management, providing flood attenuation and pollutant removal capabilities. However, there remains a knowledge gap concerning their performance, specifically in terms of pollutant removal and sediment deposition. To address this gap, the present study employs computational fluid dynamics (CFD) modeling to investigate the intricate interactions within FTI systems. Various FTI configurations are analyzed, considering mass removal through FTIs and sediment deposition, the first time where these two processes were considered together in a CFD environment. The findings demonstrate that FTIs have a significant influence on flow patterns and mass removal. Notably, FTIs enhance mass removal compared to the control case, with larger sediment particles exhibiting higher removal rates. The correlation between the short-circuit index and sedimentation in FTI ponds highlights the potential of FTIs as indicators of treatment efficiency. Furthermore, the study focuses on mass removal exclusively through the FTI root zones. The positioning of FTIs within the pond has a considerable impact, resulting in differences of up to 20% in mass removal. Moreover, the FTI configuration exerts a more pronounced influence on mass removal through FTIs than through sediment deposition alone. In cases where both processes occur simultaneously, the presence of FTIs lead to higher mass removal, primarily attributed to the FTIs themselves, particularly in the initial segment. Remarkably, certain FTI configurations enable mass removal exceeding 70% for large sediment particles, even with a pond length less than half of the original.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Lagoas
2.
Sci Total Environ ; 854: 158685, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108835

RESUMO

The majority of the carbon stored in seagrass sediments originates outside the meadow, such that the carbon storage capacity within a meadow is strongly dependent on hydrodynamic conditions that favor deposition and retention of fine organic matter within the meadow. By extension, if hydrodynamic conditions vary across a meadow, they may give rise to spatial gradients in carbon. This study considered whether the spatial gradients in sediment and carbon accretion rates correlated with the spatial variation in hydrodynamic intensity within a single meadow. Field measurements were conducted in three depth zones across a Zostera marina L. (eelgrass) meadow in Nahant Harbor, Massachusetts. Four sediment cores were collected in each zone, including one outside the meadow (control) and three within the meadow at increasing distances from the nearest meadow edge. Sedimentation and carbon accretion rates were estimated by combining the measurements of dry bulk density, organic carbon fraction (%OC), 210Pb, and 226Ra. Tilt current meters measured wave velocities within each zone, which were used to estimate turbulent kinetic energy (TKE). Both sediment and carbon accretion rates exhibited spatial heterogeneity across the meadow, which were correlated with the spatial variation in near-bed TKE. Specifically, both accretion rates increased with decreasing TKE, which was consistent with diminished resuspension associated with lower TKE. A method is proposed for using spatial gradients in hydrodynamic intensity to improve the estimation of total meadow accretion rates.

3.
Nat Commun ; 13(1): 4641, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941151

RESUMO

Marsh vegetation, a definitive component of delta ecosystems, has a strong effect on sediment retention and land-building, controlling both how much sediment can be delivered to and how much is retained by the marsh. An understanding of how vegetation influences these processes would improve the restoration and management of marshes. We use a random displacement model to simulate sediment transport, deposition, and resuspension within a marsh. As vegetation density increases, velocity declines, which reduces sediment supply to the marsh, but also reduces resuspension, which enhances sediment retention within the marsh. The competing trends of supply and retention produce a nonlinear relationship between sedimentation and vegetation density, such that an intermediate density yields the maximum sedimentation. Two patterns of sedimentation spatial distribution emerge in the simulation, and the exponential distribution only occurs when resuspension is absent. With resuspension, sediment is delivered farther into the marsh and in a uniform distribution. The model was validated with field observations of sedimentation response to seasonal variation in vegetation density observed in a marsh within the Mississippi River Delta.


Assuntos
Ecossistema , Áreas Alagadas , Rios
4.
Sci Rep ; 11(1): 8644, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883607

RESUMO

Wood is an integral part of a river ecosystem and the number of restoration projects using log placements is increasing. Physical model tests were used to explore how the wood position and submergence level (discharge) affect wake structure, and hence the resulting habitat. We observed a von-Kármán vortex street (VS) for emergent logs placed at the channel center, while no VS formed for submerged logs, because the flow entering the wake from above the log (sweeping flow) inhibited VS formation. As a result, emergent logs placed at the channel center resulted in ten times higher turbulent kinetic energy compared to submerged logs. In addition, both spatial variation in time-mean velocity and turbulence level increased with increasing log length and decreasing submergence level. Submerged logs and logs placed at the channel side created a greater velocity deficit and a longer recirculation zone, both of which can increase the residence time in the wake and deposition of organic matter and nutrients. The results demonstrate that variation in log size and degree of submergence can be used as a tool to vary habitat suitability for different fish preferences. To maximize habitat diversity in rivers, we suggest a diverse large wood placement.

5.
Sci Rep ; 7(1): 6587, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747758

RESUMO

While studies on vegetated channel flows have been developed in many research centers, studies on jets interacting with vegetation are still rare. This study presents and analyzes turbulent jets issued into an obstructed cross-flow, with emergent vegetation simulated with a regular array of cylinders. The paper presents estimates of the turbulence diffusion coefficients and the main turbulence variables of jets issued into a vegetated channel flow. The experimental results are compared with jets issued into unobstructed cross-flow. In the presence of the cylinder array, the turbulence length-scales in the streamwise and transverse directions were reduced, relative to the unobstructed crossflow. This contributed to a reduction in streamwise turbulent diffusion, relative to the unobstructed conditions. In contrast, the transverse turbulent diffusion was enhanced, despite the reduction in length-scale, due to enhanced turbulent intensity and the transverse deflection of flow around individual cylinders. Importantly, in the obstructed condition, the streamwise and transverse turbulent diffusion coefficients are of the same order of magnitude.

6.
Phys Rev Lett ; 111(16): 164501, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182270

RESUMO

Surface-piercing vegetation often captures particles that flow on the water surface, where surface tension forces contribute to capture. Yet the physics of capillary capture in flow has not been addressed. Here we model the capture of floating particles by surface-piercing collectors at moderately low Reynolds numbers (Re<10). We find a trade-off between the capillary force, which increases with the collector diameter, and the relative size of the meniscus, which decreases with the collector diameter, resulting in an optimal collector diameter of ~1-10 mm that corresponds to the regime in which many aquatic plant species operate. For this diameter range the angular distribution of capture events is nearly uniform and capture can be orders of magnitude more efficient than direct interception, showing that capillary forces can be major contributors to the capture of seeds and particulate matter by organisms.


Assuntos
Organismos Aquáticos/química , Modelos Biológicos , Modelos Químicos , Plantas/química , Água/química , Animais , Anopheles/química , Ação Capilar , Carex (Planta)/química , Ecossistema , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...