Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177108

RESUMO

Nonlinear silicon photonics has a high compatibility with CMOS technology and therefore is particularly attractive for various purposes and applications. Second harmonic generation (SHG) in silicon nanowires (NWs) is widely studied for its high sensitivity to structural changes, low-cost fabrication, and efficient tunability of photonic properties. In this study, we report a fabrication and SHG study of Si nanowire/siloxane flexible membranes. The proposed highly transparent flexible membranes revealed a strong nonlinear response, which was enhanced via activation by an infrared laser beam. The vertical arrays of several nanometer-thin Si NWs effectively generate the SH signal after being exposed to femtosecond infrared laser irradiation in the spectral range of 800-1020 nm. The stable enhancement of SHG induced by laser exposure can be attributed to the functional modifications of the Si NW surface, which can be used for the development of efficient nonlinear platforms based on silicon. This study delivers a valuable contribution to the advancement of optical devices based on silicon and presents novel design and fabrication methods for infrared converters.

2.
Materials (Basel) ; 15(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36556538

RESUMO

Polysiloxanes and materials based on them (silicone materials) are of great interest in optoelectronics due to their high flexibility, good film-forming ability, and optical transparency. According to the literature, polysiloxanes are suggested to be very promising in the field of optoelectronics and could be employed in the composition of liquid crystal devices, computer memory drives organic light emitting diodes (OLED), and organic photovoltaic devices, including dye synthesized solar cells (DSSC). Polysiloxanes are also a promising material for novel optoectronic devices, such as LEDs based on arrays of III-V nanowires (NWs). In this review, we analyze the currently existing types of silicone materials and their main properties, which are used in optoelectronic device development.

3.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684990

RESUMO

We demonstrate flexible red light-emitting diodes based on axial GaPAs/GaP heterostructured nanowires embedded in polydimethylsiloxane membranes with transparent electrodes involving single-walled carbon nanotubes. The GaPAs/GaP axial nanowire arrays were grown by molecular beam epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films has the main electroluminescence line at 670 nm. Membrane-based light-emitting diodes (LEDs) were compared with GaPAs/GaP NW array LED devices processed directly on Si growth substrate revealing similar electroluminescence properties. Demonstrated membrane-based red LEDs are opening an avenue for flexible full color inorganic devices.

4.
J Phys Chem Lett ; 12(39): 9672-9676, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34590867

RESUMO

The architecture of transparent contacts is of utmost importance for creation of efficient flexible light-emitting devices (LEDs) and other deformable electronic devices. We successfully combined the newly synthesized transparent and durable silicone rubbers and the semiconductor materials with original fabrication methods to design LEDs and demonstrate their significant flexibility. We developed electrodes based on a composite GaP nanowire-phenylethyl-functionalized silicone rubber membrane, improved with single-walled carbon nanotube films for a hybrid poly(ethylene oxide)-metal-halide perovskite (CsPbBr3) flexible green LED. The proposed approach provides a novel platform for fabrication of flexible hybrid optoelectronic devices.

5.
Nanomaterials (Basel) ; 11(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200237

RESUMO

We propose and demonstrate both flexible and stretchable blue light-emitting diodes based on core/shell InGaN/GaN quantum well microwires embedded in polydimethylsiloxane membranes with strain-insensitive transparent electrodes involving single-walled carbon nanotubes. InGaN/GaN core-shell microwires were grown by metal-organic vapor phase epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films can stand up to 20% stretching while maintaining efficient operation. Membrane-based LEDs show less than 15% degradation of electroluminescence intensity after 20 cycles of stretching thus opening an avenue for highly deformable inorganic devices.

6.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562740

RESUMO

Inorganic halides perovskite CsPbX3 (X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) nanoparticles are efficient light-conversion objects that have attracted significant attention due to their broadband tunability over the entire visible spectral range of 410-700 nm and high quantum yield of up to 95%. Here, we demonstrate a new method of recrystallization of CsPbBr3 nanoparticles inside the electrospun fluoropolymer fibers. We have synthesized nonwoven tetrafluoroethylene mats embedding CsPbBr3 nanoparticles using inexpensive commercial precursors and syringe electrospinning equipment. The fabricated nonwoven mat samples demonstrated both down-conversion of UV light to 506 nm and up-conversion of IR femtosecond laser radiation to 513 nm green photoluminescence characterized by narrow emission line-widths of 35 nm. Nanoparticle formation inside nonwoven fibers was confirmed by TEM imaging and water stability tests controlled by fluorimetry measurements. The combination of enhanced optical properties of CsPbBr3 nanoparticles and mechanical stability and environmental robustness of highly deformable nonwoven fluoropolymer mats is appealing for flexible optoelectronic applications, while the industry-friendly fabrication method is attractive for commercial implementations.

7.
ACS Appl Mater Interfaces ; 12(49): 55141-55147, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33249829

RESUMO

We propose a novel strategy to enhance optoelectrical properties of single-walled carbon nanotube (SWCNT) films for transparent electrode applications by film patterning. First, we theoretically considered the effect of the conducting pattern geometry on the film quality factor and then experimentally examined the calculated structures. We extend these results to show that the best characteristics of patterned SWCNT films can be achieved using the combination of initial film properties: low transmittance and high conductivity. The proposed strategy allows the patterned layers of SWCNTs to outperform the widely used indium-tin-oxide electrodes on both flexible and rigid substrates.

8.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114110

RESUMO

Controlled growth of heterostructured nanowires and mechanisms of their formation have been actively studied during the last decades due to perspectives of their implementation. Here, we report on the self-catalyzed growth of axially heterostructured GaPN/GaP nanowires on Si(111) by plasma-assisted molecular beam epitaxy. Nanowire composition and structural properties were examined by means of Raman microspectroscopy and transmission electron microscopy. To study the optical properties of the synthesized nanoheterostructures, the nanowire array was embedded into the silicone rubber membrane and further released from the growth substrate. The reported approach allows us to study the nanowire optical properties avoiding the response from the parasitically grown island layer. Photoluminescence and Raman studies reveal different nitrogen content in nanowires and parasitic island layer. The effect is discussed in terms of the difference in vapor solid and vapor liquid solid growth mechanisms. Photoluminescence studies at low temperature (5K) demonstrate the transition to the quasi-direct gap in the nanowires typical for diluted nitrides with low N-content. The bright room temperature photoluminescent response demonstrates the potential application of nanowire/polymer matrix in flexible optoelectronic devices.

9.
ACS Nano ; 14(8): 10624-10632, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806025

RESUMO

Engineering of nonlinear optical response in nanostructures is one of the key topics in nanophotonics, as it allows for broad frequency conversion at the nanoscale. Nevertheless, the application of the developed designs is limited by either high cost of their manufacturing or low conversion efficiencies. This paper reports on the efficient second-harmonic generation in a free-standing GaP nanowire array encapsulated in a polymer membrane. Light coupling with optical resonances and field confinement in the nanowires together with high nonlinearity of GaP material yield a strong second-harmonic signal and efficient near-infrared (800-1200 nm) to visible upconversion. The fabricated nanowire-based membranes demonstrate high flexibility and semitransparency for the incident infrared radiation, allowing utilizing them for infrared imaging, which can be easily integrated into different optical schemes without disturbing the visualized beam.

10.
ACS Appl Mater Interfaces ; 8(39): 26198-26206, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27615556

RESUMO

A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p-n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The -3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications.

11.
Nanoscale Res Lett ; 10(1): 447, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26577391

RESUMO

We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core-shell nanowires were encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the membrane was manually peeled from the sapphire substrate, flipped upside down onto a steel holder, and transparent indium tin oxide (ITO) contact to n-GaN was deposited. The fabricated LEDs demonstrate rectifying diode characteristics. For the electroluminescence (EL) measurements, the samples were manually bonded using silver paint. The EL spectra measured at different applied voltages demonstrate a blue shift with the current increase. This shift is explained by the current injection into the InGaN areas of the active region with different average indium content.

12.
Nanotechnology ; 26(46): 465203, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26508299

RESUMO

Core/shell InGaN/GaN nanowire light emitting diodes (LEDs) based on vertically standing single nanowires and nanowire arrays were fabricated and extensively characterized. The emission of single wire LEDs with the same conformal contact geometry as the array device exhibits the same broadening as the array LED electroluminescence, which proves an excellent wire-to-wire homogeneity. The electroluminescence spectra present two peaks corresponding to the m-plane InGaN quantum well (blue emission) and to an In-rich region at the m-plane-semipolar plane junction (green emission), in agreement with structural characterizations. Modification of the contact layout and a post-growth plasma treatment enable strongly suppressing the unwanted green electroluminescence while increasing the intensity in the blue spectral range for the same injected electrical power. Electron beam induced current mapping proves the inhibition of the electrical activity of the top part of the nanowire after plasma treatment. Inductively coupled plasma etching of the In-rich region permits one to completely remove the green emission for all injection currents, but loss of intensity in the blue spectral range is observed. Selectively contacting the m-plane and plasma treatment of the top part of the nanowire appear as a viable solution for controlling the color of core/shell nanowire LEDs with an inhomogeneous indium composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...