Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Cir Bras ; 37(10): e371005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36542042

RESUMO

PURPOSE: To analyze the cytotoxicity and cell in porcine-derived decellularized skin matrix. METHODS: We analyzed the effect of multiple decellularization processes by histological analysis, DNA quantification, and flow cytometry. Subsequently, we analyzed the most appropriate hydrogel concentration to minimize cytotoxicity on fibroblast culture and to maximize cell proliferation. RESULTS: After the fourth decellularization, the DNA quantification showed the lowest DNA concentration (< 50 ng/mg). Histological analysis showed no cell components in the hydrogel. Moreover, hematoxylin and eosin showed a heterogeneous structure of collagen fibers. The best hydrogel concentration ranged from 3 to 25%, and there was no significant difference between the 24 hours and seven days. CONCLUSIONS: The process of hydrogel production was effective for removing cells and DNA elements. The best hydrogel concentration ranged from 3 to 25%.


Assuntos
Hidrogéis , Engenharia Tecidual , Animais , Suínos , Hidrogéis/análise , Hidrogéis/farmacologia , Engenharia Tecidual/métodos , Matriz Extracelular , Proliferação de Células , DNA/análise , DNA/farmacologia , Alicerces Teciduais
2.
Toxicol Lett ; 359: 96-105, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202779

RESUMO

Tebuconazole (TEB) is an important fungicide that belongs to the triazole family. It is widely used in agriculture and its use has experienced a tremendous increase in the last decade. The long-term exposure of humans to this pesticide is a real threat because it is stable in water and soil. The association between long-term exposure to TEB and damage of several biological systems, including hepatotoxicity and cardiotoxicity is evident, however, acute toxicological studies to reveal the toxicity of TEB are limited. This research paper addressed the acute exposure of TEB in murine hearts, cardiomyocytes, and human cardiomyocytes derived from an induced pluripotent stem cell (hiPSC-CMs), spelling out TEB's impact on electromechanical properties of the cardiac tissue. In ex vivo experiments, TEB dose dependently, caused significant electrocardiogram (ECG) remodeling with prolonged PR and QTc interval duration. The TEB was also able to change the action potential waveform in murine cardiomyocytes and hiPSC-CMs. These effects were associated with the ability of the compound to block the L-type calcium current (IC50 = 33.2 ± 7.4 µmol.l-1) and total outward potassium current (IC50 = 5.7 ± 1.5 µmol.l-1). TEB also increased the sodium/calcium exchanger current in its forward and reverse modes. Additionally, sarcomere shortening and calcium transient in isolated cardiomyocytes were enhanced when cells were exposed to TEB at 30 µmol.l-1. Combined, our results demonstrated that acute TEB exposure affects the cardiomyocyte's electro-contractile properties and triggers the appearance of ECG abnormalities.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Cardiotoxicidade/etiologia , Fungicidas Industriais/toxicidade , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Triazóis/toxicidade , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL
3.
Eur J Pharm Sci ; 93: 431-6, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27575876

RESUMO

AIM: Atorvastatin, a HMG-CoA reductase inhibitor, used in the treatment of hypercholesterolemia, has been previously shown to regulate ABCB1 expression in vivo and in vitro. We hypothesized that the statin could regulate gene expression of ABCB1 transporter via microRNAs. METHODS: Expression of microRNAs and ABCB1 mRNA was examined in atorvastatin-treated and control cells using real-time PCR. miR-491-3P mimic and inhibitor were transfected in Caco-2 and ABCB1 expression was monitored by western blot and real-time PCR. RESULTS: In HepG2 cells, none of the microRNAs predicted to target ABCB1 3'UTR was regulated by atorvastatin treatment. In agreement with this, ABCB1 3'UTR activity was not modulated in HepG-2 cells after 48h-treatment as measured by luciferase assay. In Caco-2 cells, atorvastatin treatment provoked a decrease in luciferase activity and, accordingly, miR-491-3p was upregulated about 2.7 times after 48h-statin treatment. Luciferase analysis of miR-491-3p with a mimetic or inhibitor of miR-491-3p revealed that this microRNA could target ABCB1 3'UTR, as after miR-491-3p inhibition, ABCB1 levels were increased by two-fold, and miR-491-3p superexpression decreased ABCB1 3'UTR activity. Finally, functional analysis revealed that treatment with miR-491-3p inhibitor could reverses atorvastatin attenuation of ABCB1 (Pg-p) protein levels. CONCLUSION: Our results suggest atorvastatin control ABCB1 expression via miR-491-3p in Caco-2 cells. This finding may be an important mechanism of statin drug-drug interaction, since common concomitant drugs used in the prevention of cardiovascular diseases are ABCB1 substrates.


Assuntos
Atorvastatina/farmacologia , MicroRNAs/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , RNA Mensageiro/metabolismo
4.
Biochem Biophys Res Commun ; 461(4): 582-8, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25888790

RESUMO

The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na(+)/H(+) exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the -61 to -42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels.


Assuntos
Rim/fisiologia , Hormônio Paratireóideo/farmacologia , Regiões Promotoras Genéticas/genética , Transdução de Sinais/fisiologia , Trocadores de Sódio-Hidrogênio/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Rim/citologia , Rim/efeitos dos fármacos , Gambás , Transdução de Sinais/efeitos dos fármacos , Trocador 3 de Sódio-Hidrogênio , Ativação Transcricional/efeitos dos fármacos
5.
Pflugers Arch ; 463(5): 703-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22419175

RESUMO

The Na(+/)H(+) exchanger isoform 3 (NHE3) is essential for HCO(3)(-) reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO(3)(-) concentration in the cell culture medium and respiratory acidosis by increasing CO(2) tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 ± 0.02) and severe (6.95 ± 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 ± 0.03) and severe (6.86 ± 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.


Assuntos
Acidose Respiratória/metabolismo , Acidose/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Acidose/genética , Acidose/patologia , Acidose Respiratória/genética , Acidose Respiratória/patologia , Adaptação Fisiológica/genética , Animais , Sequência de Bases , Sítios de Ligação , Dióxido de Carbono/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Gambás , Regiões Promotoras Genéticas , Isoformas de Proteínas , Prótons , RNA Mensageiro/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...