Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673077

RESUMO

The laser surface texturing (LST) technique has recently been used to enhance adhesion bond strength in various coating applications and to create structures with controlled hydrophobic or superhydrophobic surfaces. The texturing processing parameters can be adjusted to tune the surface's polarity, thereby controlling the ratio between the polar and dispersed components of the surface free energy and determining its hydrophobic character. The aim of this work is to systematically select appropriate laser and scan head parameters for high-quality surface topography of metal-based materials. A correlation between texturing parameters and wetting properties was made in view of several technological applications, i.e., for the proper growth of conformal layers onto laser-textured metal surfaces. Surface analyses, carried out by scanning electron microscopy and profilometry, reveal the presence of periodic microchannels decorated with laser-induced periodic surface structures (LIPSS) in the direction parallel to the microchannels. The water contact angle varies widely from about 20° to 100°, depending on the treated material (titanium, nickel, etc.). Nowadays, reducing the wettability transition time from hydrophilicity to hydrophobicity, while also changing environmental conditions, remains a challenge. Therefore, the characteristics of environmental dust and its influence on the properties of the picosecond laser-textured surface (e.g., chemical bonding of samples) have been studied while monitoring ambient conditions.

2.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987370

RESUMO

Intraocular lenses (IOLs) are commonly implanted after surgical removal of a cataractous lens. A variety of IOL materials are currently available, including collamer, hydrophobic acrylic, hydrophilic acrylic, PHEMA copolymer, polymethylmethacrylate (PMMA), and silicone. High-quality polymers with distinct physical and optical properties for IOL manufacturing and in line with the highest quality standards on the market have evolved to encompass medical needs. Each of them and their packaging show unique advantages and disadvantages. Here, we highlight the evolution of polymeric materials and mainly the current state of the art of the unique properties of some polymeric systems used for IOL design, identifying current limitations for future improvements. We investigate the characteristics of the next generation of IOL materials, which must satisfy biocompatibility requirements and have tuneable refractive index to create patient-specific eye power, preventing formation of posterior capsular opacification.

3.
Materials (Basel) ; 16(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36984315

RESUMO

The synthesis of contaminant-free silver@linear carbon chains (Ag@LCCs) nanohybrid systems, at different Ag/LCCs ratios, by pulsed laser ablation was studied. The ablation products were first characterized by several diagnostic techniques: conventional UV-Vis optical absorption and micro-Raman spectroscopies, as well as scanning electron microscopy, operating in transmission mode. The experimental evidence was confirmed by the theoretical simulations' data. Furthermore, to gain a deeper insight into the factors influencing metal@LCCs biological responses in relation to their physical properties, in this work, we investigated the bioproperties of the Ag@LCCs nanosystems towards a wound-healing activity. We found that Ag@LCC nanohybrids maintain good antibacterial properties and possess a better capability, in comparison with Ag NPs, of interacting with mammalian cells, allowing us to hypothesize that mainly the Ag@LCCs 3:1 might be suitable for topical application in wound healing, independent of (or in addition to) the antibacterial effect.

4.
Biomater Adv ; 145: 213193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587469

RESUMO

In the biomedical field, the demand for the development of broad-spectrum biomaterials able to inhibit bacterial growth is constantly increasing. Chronic infections represent the most serious and devastating complication related to the use of biomaterials. This is particularly relevant in the orthopaedic field, where infections can lead to implant loosening, arthrodesis, amputations and sometimes death. Antibiotics are the conventional approach for implanted-associated infections, but they have the limitation of increasing antibiotic resistance, a critical worldwide healthcare issue. In this context, the development of anti-infective biomaterials and infection-resistant surfaces can be considered the more effective strategy to prevent the implant colonisation and biofilm formation by bacteria, so reducing the occurrence of implant-associated infections. In the last years, inorganic nanostructures have become extremely appealing for chemical modifications or coatings of Ti surfaces, since they do not generate antibiotic resistance issues and are featured by superior stability, durability, and full compatibility with the sterilization process. In this work, we present a simple, rapid, and cheap chemical nanofunctionalization of titanium (Ti) scaffolds with colloidal ZnO and Mn-doped ZnO nanoparticles (NPs), prepared by a sol-gel method, exhibiting antibacterial activity. ZnO NPs and ZnxMn(1-x)O NPs formation with a size around 10-20nm and band gap values of 3.42 eV and 3.38 eV, respectively, have been displayed by characterization studies. UV-Vis, fluorescence, and Raman investigation suggested that Mn ions acting as dopants in the ZnO lattice. Ti scaffolds have been functionalized through dip coating, obtaining ZnO@Ti and ZnxMn(1-x)O@Ti biomaterials characterized by a continuous nanostructured film. ZnO@Ti and ZnxMn(1-x)O@Ti displayed an enhanced antibacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, compared to NPs in solution with better performance of ZnxMn(1-x)O@Ti respect to ZnO@Ti. Notably, it has been observed that ZnxMn(1-x)O@Ti scaffolds reach a complete eradication for S. aureus and 90 % of reduction for P. aeruginosa. This can be attributed to Zn2+ and Mn2+ metal ions release (as observed by ICP MS experiments) that is also maintained over time (72 h). To the best of our knowledge, this is the first study reported in the literature describing ZnO and Mn-doped ZnO NPs nanofunctionalized Ti scaffolds with improved antibacterial performance, paving the way for the realization of new hybrid implantable devices through a low-cost process, compatible with the biotechnological industrial chain method.


Assuntos
Nanoestruturas , Óxido de Zinco , Titânio/farmacologia , Óxido de Zinco/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Materiais Biocompatíveis/farmacologia , Zinco/farmacologia
5.
Polymers (Basel) ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501713

RESUMO

Adaptive optics (AO) is employed for the continuous measurement and correction of ocular aberrations. Human eye refractive errors (lower-order aberrations such as myopia and astigmatism) are corrected with contact lenses and excimer laser surgery. Under twilight vision conditions, when the pupil of the human eye dilates to 5-7 mm in diameter, higher-order aberrations affect the visual acuity. The combined use of wavefront (WF) technology and AO systems allows the pre-operative evaluation of refractive surgical procedures to compensate for the higher-order optical aberrations of the human eye, guiding the surgeon in choosing the procedure parameters. Here, we report a brief history of AO, starting from the description of the Shack-Hartmann method, which allowed the first in vivo measurement of the eye's wave aberration, the wavefront sensing technologies (WSTs), and their principles. Then, the limitations of the ocular wavefront ascribed to the IOL polymeric materials and design, as well as future perspectives on improving patient vision quality and meeting clinical requests, are described.

7.
Materials (Basel) ; 15(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35629727

RESUMO

Gold nanoparticles (Au NPs) have received great attention owing to their biocompatible nature, environmental, and widespread biomedical applications. Au NPs are known as capable to regulate inflammatory responses in several tissues and organs; interestingly, lower toxicity in conjunction with anti-inflammatory effects was reported to occur with Au NPs treatment. Several variables drive this benefit-risk balance, including Au NPs physicochemical properties such as their morphology, surface chemistry, and charge. In our research we prepared hybrid Au@LCC nanocolloids by the Pulsed Laser Ablation, which emerged as a suitable chemically clean technique to produce ligand-free or functionalized nanomaterials, with tight control on their properties (product purity, crystal structure selectivity, particle size distribution). Here, for the first time to our knowledge, we have investigated the bioproperties of Au@LCCs. When tested in vitro on intestinal epithelial cells exposed to TNF-α, Au@LCCs sample at the ratio of 2.6:1 showed a significantly reduced TNF gene expression and induced antioxidant heme oxygenase-1 gene expression better than the 1:1 dispersion. Although deeper investigations are needed, these findings indicate that the functionalization with LCCs allows a better interaction of Au NPs with targets involved in the cell redox status and inflammatory signaling.

8.
Sensors (Basel) ; 21(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916680

RESUMO

Pure, mixed and doped metal oxides (MOX) have attracted great interest for the development of electrical and electrochemical sensors since they are cheaper, faster, easier to operate and capable of online analysis and real-time identification. This review focuses on highly sensitive chemoresistive type sensors based on doped-SnO2, RhO, ZnO-Ca, Smx-CoFe2-xO4 semiconductors used to detect toxic gases (H2, CO, NO2) and volatile organic compounds (VOCs) (e.g., acetone, ethanol) in monitoring of gaseous markers in the breath of patients with specific pathologies and for environmental pollution control. Interesting results about the monitoring of biochemical substances as dopamine, epinephrine, serotonin and glucose have been also reported using electrochemical sensors based on hybrid MOX nanocomposite modified glassy carbon and screen-printed carbon electrodes. The fundamental sensing mechanisms and commercial limitations of the MOX-based electrical and electrochemical sensors are discussed providing research directions to bridge the existing gap between new sensing concepts and real-world analytical applications.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119813, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892305

RESUMO

Trusted methods for identifying different Multiple Myeloma (MM) cells and their biological diversity due to their immunophenotypic variety are often little detailed and difficult to find in literature. In this work, we show that micro-Raman spectroscopy can be used to highlight if there is a certain degree of distinction or correlation between the MM subtype plasmacells in relation to the cluster of differentiation (CD45+/CD38+/CD138-) and (CD45-/CD38+/CD138+). After taking samples from the bone marrow of patients with Multiple Myeloma, the PCs were sorted by flow cytometry, selecting the most common CD of the disease, i.e. CD 45, CD38 and CD138. Some spectral differences are observed comparing the Raman spectra of the two set of samples investigated. To better define in which spectral regions there are greater differences and, therefore, to which biological contributions the changes refers, we also explored the principal component analysis (PCA) of the collected Raman data. The spectral variations between the different sorted cells have been highlighted by plotting loading vectors PC1 and PC2, which shows a net differentiation between the two set of cells. Ultimately, the differences shown by PCA have been associated with the spectral variations observed and explained in terms of changes of proteins and lipid contributions. Thus, the differentiation of Multiple Myeloma subtype plasma cells by confocal micro-Raman spectroscopy can be proposed as a diagnostic tool in the speeding up of cell identification, assessing the intracellular biochemical changes that take place in cancer cells.


Assuntos
Mieloma Múltiplo , Medula Óssea , Citometria de Fluxo , Humanos , Mieloma Múltiplo/diagnóstico , Análise Multivariada , Plasmócitos
10.
Nanomaterials (Basel) ; 10(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238455

RESUMO

Laser synthesis emerges as a suitable technique to produce ligand-free nanoparticles, alloys and functionalized nanomaterials for catalysis, imaging, biomedicine, energy and environmental applications. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment and conjugate a large variety of nanostructures in a scalable and clean way. In this work, we give an overview on the fundamentals of pulsed laser synthesis of nanocolloids and new information about its scalability towards selected applications. Biomedicine, catalysis and sensing are the application areas mainly discussed in this review, highlighting advantages of laser-synthesized nanoparticles for these types of applications and, once partially resolved, the limitations to the technique for large-scale applications.

11.
Biosensors (Basel) ; 10(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252484

RESUMO

The development of MnO2-graphene (MnO2-GR) composite by microwave irradiation method and its application as an electrode material for the selective determination of serotonin (SE), popularly known as "happy chemical", is reported. Anchoring MnO2 nanoparticles on graphene, yielded MnO2-GR composite with a large surface area, improved electron transport, high conductivity and numerous channels for rapid diffusion of electrolyte ions. The composite was characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM) for assessing the actual composition, structure and morphology. The MnO2-GR composite modified glassy carbon electrode (GCE) exhibited an excellent electrochemical activity towards the detection of SE in phosphate buffer saline (PBS) at physiological pH of 7.0. Under optimum conditions, the modified electrode could be applied to the quantification of serotonin by square wave voltammetry over a wide linear range of 0.1 to 800 µM with the lowest detection limit of 10 nM (S/N = 3). The newly fabricated sensor also exhibited attractive features such as good anti-interference ability, high reproducibility and long-term stability.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Compostos de Manganês/química , Óxidos/química , Serotonina/química , Eletrodos
12.
Sci Total Environ ; 718: 137457, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325618

RESUMO

We report the presence of microplastics on the external surface and in the gastrointestinal tract of white late-larval and juvenile stages (fry) of clupeid fishes caught in the Southern Tyrrhenian Sea. The average highest number of plastics debris was recorded on Sardina pilchardus (0.53 items/specimen); a lower average number of items was observed for Engraulis encrasicolus (0.26 items/specimen). The plastics were characterized by fibers that differed in shape, colour and composition. Polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide, nylon, rayon and polyurethane segments were detected by Raman and FTIR spectroscopies. Traces of organic components and dyes, compounds that are generally included in the polymer matrix to modify its base properties, were also identified on microplastics. Our results raise concerns for the potential transfer of synthetic materials through the marine food web and into humans, given the prominent role of S. pilchardus and E. encrasicolus within the food web as main food source for many marine species.


Assuntos
Peixes , Animais , Monitoramento Ambiental , Cadeia Alimentar , Larva , Plásticos , Poluentes Químicos da Água
13.
ACS Omega ; 4(19): 17967-17971, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720500

RESUMO

Quantum confinement effects in silicon nanowires (SiNWs) are expected when their diameter is less than the size of the free exciton (with a Bohr radius ∼5 nm) in bulk silicon. However, their synthesis represents a considerable technological challenge. The vapor-liquid-solid (VLS) mechanism, mediated by metallic nanoclusters brought to the eutectic liquid state, is most widely used for its simplicity and control on the SiNWs size, shape, orientation, density, and surface smoothness. VLS growth is often performed within high-vacuum physical vapor deposition systems, where the eutectic composition and the pressure conditions define the minimum diameter of the final nanowire usually around 100 nm. In this article, we present and discuss the SiNWs' growth by the VLS method in a plasma-based chemical vapor deposition system, working in the mTorr pressure range. The purpose is to demonstrate that it is possible to obtain nanostructures with sizes well beyond the observed limit by modulating the deposition parameters, like chamber pressure and plasma power, to find the proper thermodynamic conditions for nucleation. The formation of SiNWs with sub-5 nm diameter is demonstrated.

14.
Nanomaterials (Basel) ; 9(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514348

RESUMO

We created a blend between a TiO2 sponge with bimodal porosity and a Methyl-Ammonium Lead Iodide (MAPbI3) perovskite. The interpenetration of the two materials is effective thanks to the peculiar sponge structure. During the early stages of the growth of the TiO2 sponge, the formation of 5-10 nm-large TiO2 auto-seeds is observed which set the micro-porosity (<5 nm) of the layer, maintained during further growth. In a second stage, the auto-seeds aggregate into hundreds-of-nm-large meso-structures by their mutual shadowing of the grazing Ti flux for local oxidation. This process generates meso-pores (10-100 nm) treading across the growing layer, as accessed by tomographic synchrotron radiation coherent X-ray imaging and environmental ellipsometric porosimetry. The distributions of pore size are extracted before (>47% V) and after MAPbI3 loading, and after blend ageing, unfolding a starting pore filling above 80% in volume. The degradation of the perovskite in the blend follows a standard path towards PbI2 accompanied by the concomitant release of volatile species, with an activation energy of 0.87 eV under humid air. The use of dry nitrogen as environmental condition has a positive impact in increasing this energy by ~0.1 eV that extends the half-life of the material to 7 months under continuous operation at 60 °C.

15.
Mar Pollut Bull ; 146: 408-416, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31426175

RESUMO

The present study investigates the occurrence of plastic pollution in two commercially important marine teleosts (Zeus faber and Lepidopus caudatus) from the northern coasts of Sicily (Tyrrhenian Sea). Plastics occurrence in the gastrointestinal tract was higher in Lepidopus caudatus (78.1%) than Zeus faber (51.4%). Debris characterization, carried out by micro-Raman spectroscopy, allowed identified the main types of found polymers as: polypropylene (PP), polyamide (PA), nylon and, to a lesser extent, polyethylene (PE). Of the two fish species studied, the silver scabbardfish appeared to be the more vulnerable to plastic ingestion. Our study represents a starting point that may pave the way for future investigation of the fate, accumulation and transfer of plastic debris to upper trophic levels, to verify their potential toxicity and to better understand strategies to mitigate this phenomenon.


Assuntos
Trato Gastrointestinal/química , Perciformes , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Exposição Dietética/análise , Monitoramento Ambiental/métodos , Mar Mediterrâneo , Plásticos/química , Sicília , Análise Espectral Raman , Resíduos/análise , Poluentes Químicos da Água/química
16.
Sci Total Environ ; 691: 455-465, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323590

RESUMO

Pollution deriving from textile wastes, including industrial and household waste, is recently of great interest due to their environmental impacts. Anthropogenic and synthetic fibers are responsible for negative effects on the quality of water and soil, and, also, their presence damages plant and animal health. In this work, the authors revealed the occurrence of man-made cellulose fibers in specimens of Boops boops from the Northern Sicilian coasts. Bogue was chosen as target species as it has been used as an indicator within the European Marine Strategy Framework Directive (MSFD 2008/56/EC) in order to value the "microplastics status" in the stomach contents. Of the 30 specimens examined, 63.3% of these had ingested fibers items. The number of fibers ranged from 1 to 10 per specimens with an average of 2.7 items/specimen. Fibers length ranged from 0.5 to 30 mm, most of them were black (95%), and a small percentage was red (5%). The ingestion of man-made cellulose fibers, observed for the first time, in Boops boops in the Mediterranean Sea wake-up call and it should attract the attention of the EU for new guidelines where this new type of contaminant is classified harmful as well as plastics.


Assuntos
Monitoramento Ambiental , Perciformes , Plásticos/análise , Poluentes da Água/análise , Animais , Conteúdo Gastrointestinal , Mar Mediterrâneo , Sicília
17.
Nanomaterials (Basel) ; 9(6)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151299

RESUMO

Silicon nanowires (Si-NWs) have been extensively studied for their numerous applications in nano-electronics. The most common method for their synthesis is the vapor-liquid-solid growth, using gold as catalyst. After the growth, the metal remains on the Si-NW tip, representing an important issue, because Au creates deep traps in the Si band gap that deteriorate the device performance. The methods proposed so far to remove Au offer low efficiency, strongly oxidize the Si-NW sidewalls, or produce structural damage. A physical and chemical characterization of the as-grown Si-NWs is presented. A thin shell covering the Au tip and acting as a barrier is found. The chemical composition of this layer is investigated through high resolution transmission electron microscopy (TEM) coupled with chemical analysis; its formation mechanism is discussed in terms of atomic interdiffusion phenomena, driven by the heating/cooling processes taking place inside the eutectic-Si-NW system. Based on the knowledge acquired, a new efficient etching procedure is developed. The characterization after the chemical etching is also performed to monitor the removal process and the Si-NWs morphological characteristics, demonstrating the efficiency of the proposed method and the absence of modifications in the nanostructure.

18.
Nanomaterials (Basel) ; 9(5)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052433

RESUMO

The synthesis by pulsed laser ablation and the characterization of both the surface nanostructure and the optical properties of noble metal nanoparticle-based substrates used in Surface Enhanced Raman Spectroscopy are discussed with reference to application in the detection of anti-epileptic drugs. Results on two representative drugs, namely Carbamazepine and Perampanel, are critically addressed.

19.
J Immunol Methods ; 465: 45-52, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30552870

RESUMO

Sepsis is a systemic inflammatory response ensuing from presence and persistence of microorganisms in the bloodstream. The possibility to identify them at low concentrations may improve the problem of human health and therapeutic outcomes. So, sensitive and rapid diagnostic systems are essential to evaluate bacterial infections during the time, also reducing the cost. In this study, from random M13 phage display libraries, we selected phage clones that specifically bind surface of Staphyloccocus aureus, Pseudomonas aeruginosa and Escherichia coli. Then, commercial magnetic beads were functionalized with phage clones through covalent bond and used as capture and concentrating of pathogens from blood. We found that phage-magnetic beads complex represents a network which enables a cheap, high sensitive and specific detection of the bacteria involved in sepsis by micro-Raman spectroscopy. The enter process required 6 h and has the limit of detection of 10 Colony Forming Units on 7 ml of blood (CFU/7 ml).


Assuntos
Bactérias , Bacteriófago M13/química , Separação Imunomagnética , Biblioteca de Peptídeos , Sepse , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bacteriófago M13/imunologia , Humanos , Limite de Detecção , Sepse/sangue , Sepse/microbiologia , Análise Espectral Raman
20.
Colloids Surf B Biointerfaces ; 170: 233-241, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29933232

RESUMO

Tailored colloids of uniformly sized and engineered molybdenum oxide nanoparticles were produced, for the first time, by pulsed laser ablation in water. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products, very useful issues in biological applications. A selective tuning of MoO chemical bonding configurations and a suitable control of nanoparticles size distributions were achieved during the ablation processes by varying the water temperature and by applying an external electric field. The metal redox properties are fundamental factors governing both cell uptake and interaction mode with Mo oxide nanoparticles. Micro-Raman spectroscopy was used to investigate the existence of cellular changes induced by Mo oxide colloids on the fibroblast cell line NIH/3T3 in relation to the molecular vibrations due to proteins, lipids and nucleic acids. The label-free micro-Raman spectroscopy provides an easy and noninvasive method to monitor the harmful effect of toxic agents on cells through ROS production or redox-dependent mechanisms. In view of potential biological applications, molybdenum oxide nanoparticles cytotoxicity towards NIH/3T3 cells was also investigated. A statistical analysis shows that, in the 10-100 µg/mL Mo concentration range, all the colloids are cytotoxic, progressively reducing the cell viability down to 75% upon increasing the concentration. The effect is less pronounced for the oxygen deficient MoO3 samples where cell viability does not fall below 85%. These results open the way to identify potential bioactive products affecting cellular redox status, by using only the Raman spectral data, even before performing lengthy and expensive specific clinical analyses.


Assuntos
Fibroblastos/efeitos dos fármacos , Molibdênio/farmacologia , Nanopartículas/química , Óxidos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Coloides/química , Coloides/farmacologia , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Camundongos , Molibdênio/química , Células NIH 3T3 , Óxidos/química , Tamanho da Partícula , Análise Espectral Raman , Relação Estrutura-Atividade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...