Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262465

RESUMO

BackgroundMethodologically rigorous studies on Covid-19 vaccine effectiveness (VE) in preventing SARS-CoV-2 infection are critically needed to inform national and global policy on Covid-19 vaccine use. In Israel, healthcare personnel (HCP) were initially prioritized for Covid-19 vaccination, creating an ideal setting to evaluate real-world VE in a closely monitored population. MethodsWe conducted a prospective study among HCP in 6 hospitals to estimate the effectiveness of the BNT162b2 mRNA Covid-19 vaccine in preventing SARS-CoV-2 infection. Participants filled out weekly symptom questionnaires, provided weekly nasal specimens, and three serology samples - at enrollment, 30 days and 90 days. We estimated VE against PCR-confirmed SARS-CoV-2 infection using the Cox Proportional Hazards model and against a combined PCR/serology endpoint using Fishers exact test. FindingsOf the 1,567 HCP enrolled between December 27, 2020 and February 15, 2021, 1,250 previously uninfected participants were included in the primary analysis; 998 (79.8%) were vaccinated with their first dose prior to or at enrollment, all with Pfizer BNT162b2 mRNA vaccine. There were four PCR-positive events among vaccinated participants, and nine among unvaccinated participants. Adjusted two-dose VE against any PCR- confirmed infection was 94.5% (95% CI: 82.6%-98.2%); adjusted two-dose VE against a combined endpoint of PCR and seroconversion for a 60-day follow-up period was 94.5% (95% CI: 63.0%-99.0%). Five PCR-positive samples from study participants were sequenced; all were alpha variant. InterpretationOur prospective VE study of HCP in Israel with rigorous weekly surveillance found very high VE for two doses of Pfizer BNT162b2 mRNA vaccine against SARS-CoV-2 during a period of predominant alpha variant circulation. FundingClalit Health Services

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262393

RESUMO

Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness. One-Sentence SummarySocioeconomic inequalities impacted the SARS-CoV-2 genomic surveillance, and undermined the global pandemic preparedness.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261642

RESUMO

The SARS-Coronavirus-2 (SARS-CoV-2) driven pandemic was first recognized in late 2019, and the first few months of its evolution were relatively clock-like, dominated mostly by neutral substitutions. In contrast, the second year of the pandemic was punctuated by the emergence of several variants that bore evidence of dramatic evolution. Here, we compare and contrast evolutionary patterns of various variants, with a focus on the recent Delta variant. Most variants are characterized by long branches leading to their emergence, with an excess of non-synonymous substitutions occurring particularly in the Spike and Nucleocapsid proteins. In contrast, the Delta variant that is now becoming globally dominant, lacks the signature long branch, and is characterized by a step-wise evolutionary process that is ongoing. Contrary to the "star-like" topologies of other variants, we note the formation of several distinct clades within Delta that we denote as clades A-E. We find that sequences from the Delta D clade are dramatically increasing in frequency across different regions of the globe. Delta D is characterized by an excess of non-synonymous mutations, mostly occurring in ORF1a/b, some of which occurred in parallel in other notable variants. We conclude that the Delta surge these days is composed almost exclusively of Delta D, and discuss whether selection or random genetic drift has driven the emergence of Delta D.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438035

RESUMO

A wide range of SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) were reported to date, most of which target the spike glycoprotein and in particular its receptor binding domain (RBD) and N-terminal domain (NTD) of the S1 subunit. The therapeutic implementation of these antibodies has been recently challenged by emerging SARS-CoV-2 variants that harbor extensively mutated spike versions. Consequently, the re-assessment of mAbs, previously reported to neutralize the original early-version of the virus, is of high priority. Four previously selected mAbs targeting non-overlapping epitopes, were evaluated for their binding potency to RBD versions harboring individual mutations at spike positions 417, 439, 453, 477, 484 and 501. Mutations at these positions represent the prevailing worldwide distributed modifications of the RBD, previously reported to mediate escape from antibody neutralization. Additionally, the in vitro neutralization potencies of the four RBD-specific mAbs, as well as two NTD-specific mAbs, were evaluated against two frequent SARS-CoV-2 variants of concern (VOCs): (i) the B.1.1.7 variant, emerged in the UK and (ii) the B.1.351 variant, emerged in South Africa. Variant B.1.351 was previously suggested to escape many therapeutic mAbs, including those authorized for clinical use. The possible impact of RBD mutations on recognition by mAbs is addressed by comparative structural modelling. Finally, we demonstrate the therapeutic potential of three selected mAbs by treatment of K18-hACE2 transgenic mice two days post infection with each of the virus strains. Our results clearly indicate that despite the accumulation of spike mutations, some neutralizing mAbs preserve their potency against SARS-CoV-2. In particular, the highly potent MD65 and BL6 mAbs are shown to retain their ability to bind the prevalent novel viral mutations and to effectively protect against B.1.1.7 and B.1.351 variants of high clinical concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA