Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 159, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167673

RESUMO

Trees interact with a multitude of microbes through their roots and root symbionts such as mycorrhizal fungi and root endophytes. Here, we explore the role of fungal root symbionts as predictors of the soil and root-associated microbiomes of widespread broad-leaved trees across a European latitudinal gradient. Our results suggest that, alongside factors such as climate, soil, and vegetation properties, root colonization by ectomycorrhizal, arbuscular mycorrhizal, and dark septate endophytic fungi also shapes tree-associated microbiomes. Notably, the structure of root and soil microbiomes across our sites is more strongly and consistently associated with dark septate endophyte colonization than with mycorrhizal colonization and many abiotic factors. Root colonization by dark septate endophytes also has a consistent negative association with the relative abundance and diversity of nutrient cycling genes. Our study not only indicates that root-symbiotic interactions are an important factor structuring soil communities and functions in forest ecosystems, but also that the hitherto less studied dark septate endophytes are likely to be central players in these interactions.


Assuntos
Micorrizas , Raízes de Plantas , Raízes de Plantas/microbiologia , Árvores , Ecossistema , Solo/química , Endófitos , Europa (Continente) , Microbiologia do Solo , Fungos/genética
2.
Virus Res ; 331: 199121, 2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37086855

RESUMO

Soil viral ecology is a growing research field; however, the state of knowledge still lags behind that of aquatic systems. Therefore, to facilitate progress, the first Soil Viral Workshop was held to encourage international scientific discussion and collaboration, suggest guidelines for future research, and establish soil viral research as a concrete research area. The workshop took place at Søminestationen, Denmark, between 15 and 17th of June 2022. The meeting was primarily held in person, but the sessions were also streamed online. The workshop was attended by 23 researchers from ten different countries and from a wide range of subfields and career stages. Eleven talks were presented, followed by discussions revolving around three major topics: viral genomics, virus-host interactions, and viruses in the soil food web. The main take-home messages and suggestions from the discussions are summarized in this report.


Assuntos
Vírus , Humanos , Ecologia , Cadeia Alimentar , Genoma Viral
3.
FEMS Microbiol Rev ; 46(2)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919672

RESUMO

Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.


Assuntos
Bactérias , Ecossistema , Fungos , Plantas
4.
Environ Microbiol ; 23(1): 316-326, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185929

RESUMO

Bacteria and fungi are of uttermost importance in determining environmental and host functioning. Despite close interactions between animals, plants, their associated microbiomes, and the environment they inhabit, the distribution and role of bacteria and especially fungi across host and environments as well as the cross-habitat determinants of their community compositions remain little investigated. Using a uniquely broad global dataset of 13 483 metagenomes, we analysed the microbiome structure and function of 25 host-associated and environmental habitats, focusing on potential interactions between bacteria and fungi. We found that the metagenomic relative abundance ratio of bacteria-to-fungi is a distinctive microbial feature of habitats. Compared with fungi, the cross-habitat distribution pattern of bacteria was more strongly driven by habitat type. Fungal diversity was depleted in host-associated communities compared with those in the environment, particularly terrestrial habitats, whereas this diversity pattern was less pronounced for bacteria. The relative gene functional potential of bacteria or fungi reflected their diversity patterns and appeared to depend on a balance between substrate availability and biotic interactions. Alongside helping to identify hotspots and sources of microbial diversity, our study provides support for differences in assembly patterns and processes between bacterial and fungal communities across different habitats.


Assuntos
Bactérias/genética , Biodiversidade , Fungos/genética , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/isolamento & purificação , Metagenoma , Metagenômica , Microbiota , Micobioma , Plantas/microbiologia
5.
New Phytol ; 227(4): 1189-1199, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32279325

RESUMO

Plant nutrient-acquisition strategies drive soil processes and vegetation performance, but their effect on the soil microbiome remains poorly understood. This knowledge is important to predict the shifts in microbial diversity and functions due to increasing changes in vegetation traits under global change. Here we documented the topsoil microbiomes of 145 boreal and temperate terrestrial sites in the Baltic region that broadly differed in vegetation type and nutritional traits, such as mycorrhizal types and symbiotic nitrogen-fixation. We found that sites dominated by arbuscular mycorrhizal (AM) vegetation harbor relatively more AM fungi, bacteria, fungal saprotrophs, and pathogens in the topsoil compared with sites dominated by ectomycorrhizal (EM) plants. These differences in microbiome composition reflect the rapid nutrient cycling and negative plant-soil feedback in AM soils. Lower fungal diversity and bacteria : fungi ratios in EM-dominated habitats are driven by monodominance of woody vegetation as well as soil acidification by EM fungi, which are associated with greater diversity and relative abundance of carbohydrate-active enzymes. Our study suggests that shifts in vegetation related to global change and land use may strongly alter the topsoil microbiome structure and function.


Assuntos
Microbiota , Micorrizas , Nutrientes , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...