Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139523

RESUMO

Immune therapy for cancer patients is a new and promising area that in the future may complement traditional chemotherapy. The cell expansion phase is a critical part of the process chain to produce a large number of high-quality, genetically modified immune cells from an initial sample from the patient. Smart sensors augment the ability of the control and monitoring system of the process to react in real-time to key control parameter variations, adapt to different patient profiles, and optimize the process. The aim of the current work is to develop and calibrate smart sensors for their deployment in a real bioreactor platform, with adaptive control and monitoring for diverse patient/donor cell profiles. A set of contrasting smart sensors has been implemented and tested on automated cell expansion batch runs, which incorporate advanced data-driven machine learning and statistical techniques to detect variations and disturbances of the key system features. Furthermore, a 'consensus' approach is applied to the six smart sensor alerts as a confidence factor which helps the human operator identify significant events that require attention. Initial results show that the smart sensors can effectively model and track the data generated by the Aglaris FACER bioreactor, anticipate events within a 30 min time window, and mitigate perturbations in order to optimize the key performance indicators of cell quantity and quality. In quantitative terms for event detection, the consensus for sensors across batch runs demonstrated good stability: the AI-based smart sensors (Fuzzy and Weighted Aggregation) gave 88% and 86% consensus, respectively, whereas the statistically based (Stability Detector and Bollinger) gave 25% and 42% consensus, respectively, the average consensus for all six being 65%. The different results reflect the different theoretical approaches. Finally, the consensus of batch runs across sensors gave even higher stability, ranging from 57% to 98% with an average consensus of 80%.


Assuntos
Reatores Biológicos , Aprendizado de Máquina , Humanos , Proliferação de Células , Consenso
2.
Sensors (Basel) ; 23(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112342

RESUMO

In this paper, a data preprocessing methodology, EDA (Exploratory Data Analysis), is used for performing an exploration of the data captured from the sensors of a fluid bed dryer to reduce the energy consumption during the preheating phase. The objective of this process is the extraction of liquids such as water through the injection of dry and hot air. The time taken to dry a pharmaceutical product is typically uniform, independent of the product weight (Kg) or the type of product. However, the time it takes to heat up the equipment before drying can vary depending on different factors, such as the skill level of the person operating the machine. EDA (Exploratory Data Analysis) is a method of evaluating or comprehending sensor data to derive insights and key characteristics. EDA is a critical component of any data science or machine learning process. The exploration and analysis of the sensor data from experimental trials has facilitated the identification of an optimal configuration, with an average reduction in preheating time of one hour. For each processed batch of 150 kg in the fluid bed dryer, this translates into an energy saving of around 18.5 kWh, giving an annual energy saving of over 3.700 kWh.

3.
Polymers (Basel) ; 12(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674366

RESUMO

Environmental impacts and consumer concerns have necessitated the study of bio-based materials as alternatives to petrochemicals for packaging applications. The purpose of this review is to summarize synthetic and non-synthetic materials feasible for packaging and textile applications, routes of upscaling, (industrial) applications, evaluation of sustainability, and end-of-life options. The outlined bio-based materials include polylactic acid, polyethylene furanoate, polybutylene succinate, and non-synthetically produced polymers such as polyhydrodyalkanoate, cellulose, starch, proteins, lipids, and waxes. Further emphasis is placed on modification techniques (coating and surface modification), biocomposites, multilayers, and additives used to adjust properties especially for barriers to gas and moisture and to tune their biodegradability. Overall, this review provides a holistic view of bio-based packaging material including processing, and an evaluation of the sustainability of and options for recycling. Thus, this review contributes to increasing the knowledge of available sustainable bio-based packaging material and enhancing the transfer of scientific results into applications.

4.
BMC Bioinformatics ; 20(1): 514, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640541

RESUMO

BACKGROUND: In this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and Water Accounting Rice Model (WARM)) and two approaches based on machine learning algorithms (M5Rules and Recurrent Neural Networks (RNN)), the former inducing a rule-based model and the latter building a neural network. In situ telemetry is important to obtain quality in-field data for predictive models and this was a key aspect of the RICE-GUARD project on which this study is based. According to the authors, this is the first time process-based and machine learning modelling approaches for supporting plant disease management are compared. RESULTS: Results clearly showed that the models succeeded in providing a warning of rice blast onset and presence, thus representing suitable solutions for preventive remedial actions targeting the mitigation of yield losses and the reduction of fungicide use. All methods gave significant "signals" during the "early warning" period, with a similar level of performance. M5Rules and WARM gave the maximum average normalized scores of 0.80 and 0.77, respectively, whereas Yoshino gave the best score for one site (Kalochori 2015). The best average values of r and r2 and %MAE (Mean Absolute Error) for the machine learning models were 0.70, 0.50 and 0.75, respectively and for the process-based models the corresponding values were 0.59, 0.40 and 0.82. Thus it has been found that the ML models are competitive with the process-based models. This result has relevant implications for the operational use of the models, since most of the available studies are limited to the analysis of the relationship between the model outputs and the incidence of rice blast. Results also showed that machine learning methods approximated the performances of two process-based models used for years in operational contexts. CONCLUSIONS: Process-based and data-driven models can be used to provide early warnings to anticipate rice blast and detect its presence, thus supporting fungicide applications. Data-driven models derived from machine learning methods are a viable alternative to process-based approaches and - in cases when training datasets are available - offer a potentially greater adaptability to new contexts.


Assuntos
Simulação por Computador , Aprendizado de Máquina , Redes Neurais de Computação , Oryza/microbiologia , Doenças das Plantas , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...