Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt D): 113578, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35649490

RESUMO

This study investigated the influence of temperature (20 and 30 °C) on the formation and stability of aerobic granules in sequential batch reactors (SBR). Therefore, two lab-scale SBRs operated at 20 and 30 °C (SBR20 and SBR30) were used. The reactors were fed with municipal wastewater (CODt:TN:TP 100:15:1.7), leading to mean organic loading rates (OLR) of 1.3 ± 0.4 kgCODt m-3 day-1. Both reactors had the same height/diameter ratio of 4.2 and were inoculated with activated sludge from a municipal wastewater treatment plant. The operational conditions were also the same for both temperatures and lasted in stable process parameters for over 100 days. By optimizing the aeration and oxygen concentration, a high removal efficiency of NH4-N (∼99%) and COD (∼90%) was achieved in both reactors, despite the poor C:N:P ratio at the influent. Furthermore, a relatively low oxygen concentration of 2 mg L-1 was defined as the set point for the control strategy. Nevertheless, granulation at 30 °C was significantly faster, resulting in more stable sludge volume index (SVI) values (SVI10/SVI30 < 1.1). The granules formed at 30 °C were also larger, more compact, and considerably more stable against system disturbances. However, at higher temperatures, larger granules might be required for nitrate removal because of the increased oxygen diffusion rates. Finally, microbiological 16S rRNA gene amplicon analysis for both systems indicated major differences relatively to the inoculum sludge only for nitrogen-degrading organisms.


Assuntos
Esgotos , Águas Residuárias , Aerobiose , Reatores Biológicos/microbiologia , Nitrogênio , Oxigênio , RNA Ribossômico 16S , Temperatura , Eliminação de Resíduos Líquidos/métodos
2.
Sci Rep ; 10(1): 1229, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988298

RESUMO

The efficiency of anaerobic biofilters (AnBF) as low-cost wastewater treatment systems was investigated. Miscanthus-biochar was used as filtration media and compared with sand as a common reference material. Raw sewage from a municipal wastewater treatment plant was stored in a sedimentation tank for two days to allow pre-settlement of wastewater particles. Subsequently, wastewater was treated by AnBFs at 22 °C room temperature at a hydraulic loading rate of 0.05 m∙h-1 with an empty bed contact time of 14.4 h and a mean organic loading rate of 509 ± 173 gCOD∙m-3∙d-1. Mean removal of chemical oxygen demand (COD) of biochar filters was with 74 ± 18% significantly higher than of sand filters (61 ± 12%). In contrast to sand filters with a mean reduction of 1.18 ± 0.31 log-units, E. coli removal through biochar was with 1.35 ± 0.27 log-units significantly higher and increased with experimental time. Main removal took place within the schmutzdecke, a biologically active dirt layer that develops simultaneously on the surface of filter beds. Since the E. coli contamination of both filter materials was equal, the higher removal efficiency of biochar filters is probably a result of an improved biodegradation within deeper zones of the filter bed. Overall, performance of biochar filters was better or equal compared to sand and have thus demonstrated the suitability of Miscanthus-biochar as filter media for wastewater treatment.

3.
Sci Total Environ ; 682: 601-610, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31128373

RESUMO

In this study, the suitability of an anaerobic biofilter (AnBF) as an efficient and low-cost wastewater treatment for safer irrigation water production for Sub-Saharan Africa was investigated. To determine the influence of different ubiquitous available materials on the treatment efficiency of the AnBF, rice husks and their pyrolysed equivalent, rice husk biochar, were used as filtration media and compared with sand as a common reference material. Raw sewage from a municipal full-scale wastewater treatment plant pretreated with an anaerobic filter (AF) was used in this experiment. The filters were operated at 22 °C room temperature with a hydraulic loading rate of 0.05 m·h-1 for 400 days. The mean organic loading rate (OLR) of the AF was 194 ±â€¯74 and 63 ±â€¯16 gCOD·m-3·d-1 for the AnBF. Fecal indicator bacteria (FIB) (up to 3.9 log10-units), bacteriophages (up to 2.7 log10-units), chemical oxygen demand (COD) (up to 94%) and turbidity (up to 97%) could be significantly reduced. Additionally, the essential plant nutrients nitrogen and phosphorous were not significantly affected by the water treatment. Overall, the performance of the biochar filters was significantly better than or equal to the sand and rice husk filters. By using the treated wastewater for irrigating lettuce plants in a pot experiment, the contamination with FIB was >2.5 log-units lower (for most of the plants below the detection limit of 5.6 MPN per gram fresh weight) than for plants irrigated with raw wastewater. Respective soil samples were minimally contaminated and nearly in the same range as that of tap water.


Assuntos
Carvão Vegetal , Fazendas , Eliminação de Resíduos Líquidos/métodos , Irrigação Agrícola , Agricultura , Países em Desenvolvimento , Águas Residuárias/química , Microbiologia da Água , Poluentes Químicos da Água/análise
4.
Biotechnol Biofuels ; 11: 167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951113

RESUMO

BACKGROUND: Previous studies on the Miscellaneous Crenarchaeota Group, recently assigned to the novel archaeal phylum Bathyarchaeota, reported on the dominance of these Archaea within the anaerobic carbohydrate cycle performed by the deep marine biosphere. For the first time, members of this phylum were identified also in mesophilic and thermophilic biogas-forming biofilms and characterized in detail. RESULTS: Metagenome shotgun libraries of biofilm microbiomes were sequenced using the Illumina MiSeq system. Taxonomic classification revealed that between 0.1 and 2% of all classified sequences were assigned to Bathyarchaeota. Individual metagenome assemblies followed by genome binning resulted in the reconstruction of five metagenome-assembled genomes (MAGs) of Bathyarchaeota. MAGs were estimated to be 65-92% complete, ranging in their genome sizes from 1.1 to 2.0 Mb. Phylogenetic classification based on core gene sets confirmed their placement within the phylum Bathyarchaeota clustering as a separate group diverging from most of the recently known Bathyarchaeota clusters. The genetic repertoire of these MAGs indicated an energy metabolism based on carbohydrate and amino acid fermentation featuring the potential for extracellular hydrolysis of cellulose, cellobiose as well as proteins. In addition, corresponding transporter systems were identified. Furthermore, genes encoding enzymes for the utilization of carbon monoxide and/or carbon dioxide via the Wood-Ljungdahl pathway were detected. CONCLUSIONS: For the members of Bathyarchaeota detected in the biofilm microbiomes, a hydrolytic lifestyle is proposed. This is the first study indicating that Bathyarchaeota members contribute presumably to hydrolysis and subsequent fermentation of organic substrates within biotechnological biogas production processes.

5.
Bioresour Technol ; 218: 115-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27351707

RESUMO

A 45-L pilot MFC system, consisting of four single-chamber membraneless MFCs, was integrated into a full-scale wastewater treatment plant (WWTP) and operated under practical conditions with the effluent of the primary clarifier for nine months to identify an optimal operational strategy for stable power output and maximum substrate based energy recovery (Normalized Energy Recovery, NER). Best results with the MFC were obtained at a hydraulic retention time of 22h with COD, TSS and nitrogen removal of 24%, 40% and 28%, respectively. Mean NER of 0.36kWhel/kgCOD,deg and coulombic efficiency of 24.8% were reached. Experimental results were used to set up the first described energy balance for a whole WWTP with an integrated MFC system. Energetic calculations of the model WWTP showed that energy savings due to reduced excess sludge production and energy gain of the MFC are significantly higher than the loss of energy due to reduced biogas production.


Assuntos
Fontes de Energia Bioelétrica , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Concentração de Íons de Hidrogênio , Nitrogênio/isolamento & purificação , Projetos Piloto , Esgotos , Eliminação de Resíduos Líquidos/instrumentação
6.
Syst Appl Microbiol ; 37(8): 590-600, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25467556

RESUMO

Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L(-1) d(-1), based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm.


Assuntos
Bactérias , Biocombustíveis , Reatores Biológicos/microbiologia , Consórcios Microbianos , Triticum/química , Anaerobiose , Bactérias/classificação , Bactérias/genética , Biomassa , DNA Bacteriano/análise , DNA Bacteriano/genética , Metano/análise , Metano/metabolismo , Filogenia
7.
BMC Microbiol ; 13: 278, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24304697

RESUMO

BACKGROUND: The production of bio-methane from renewable raw material is of high interest because of the increasing scarcity of fossil fuels. The process of biomethanation is based on the inter- and intraspecific metabolic activity of a highly diverse and dynamic microbial community. The community structure of the microbial biocenosis varies between different biogas reactors and the knowledge about these microbial communities is still fragmentary. However, up to now no approaches are available allowing a fast and reliable access to the microbial community structure. Hence, the aim of this study was to originate a Flow-FISH protocol, namely a combination of flow cytometry and fluorescence in situ hybridization, for the analysis of the metabolically active microorganisms in biogas reactor samples. With respect to the heterogenic texture of biogas reactor samples and to collect all cells including those of cell aggregates and biofilms the development of a preceding purification procedure was indispensable. RESULTS: Six different purification procedures with in total 29 modifications were tested. The optimized purification procedure combines the use of the detergent sodium hexametaphosphate with ultrasonic treatment and a final filtration step. By this treatment, the detachment of microbial cells from particles as well as the disbandment of cell aggregates was obtained at minimized cell loss. A Flow-FISH protocol was developed avoiding dehydration and minimizing centrifugation steps. In the exemplary application of this protocol on pure cultures as well as biogas reactor samples high hybridization rates were achieved for commonly established domain specific oligonucleotide probes enabling the specific detection of metabolically active bacteria and archaea. Cross hybridization and autofluorescence effects could be excluded by the use of a nonsense probe and negative controls, respectively. CONCLUSIONS: The approach described in this study enables for the first time the analysis of the metabolically active fraction of the microbial communities within biogas reactors by Flow-FISH.


Assuntos
Reatores Biológicos/microbiologia , Biota , Citometria de Fluxo/métodos , Hibridização in Situ Fluorescente/métodos , Microbiologia Industrial/métodos , Metano/metabolismo , Anaerobiose , Fermentação
8.
Bioresour Technol ; 124: 321-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22989660

RESUMO

In this experimental work, the feasibility of wheat straw as a feedstock for biogas production is investigated using the newly developed upflow anaerobic solid-state (UASS) process. With the analytical emphasis placed on methane and metabolite production, both mesophilic and thermophilic 39 L UASS reactors were operated for 218 days at an organic loading rate of 2.5 g(VS)L(-1)d(-1) using wheat straw as sole substrate. For improved methanization of soluble metabolites, each UASS reactor was connected to an individual 30 L anaerobic filter (AF). During steady state thermophilic straw digestion was found to have a 36% higher methane yield (0.165 L g(VS)(-1)) whereas the hydrolysis rate constant increased by 106% (0.066 d(-1)).


Assuntos
Triticum/metabolismo , Anaerobiose , Biocombustíveis , Estudos de Viabilidade , Filtração , Temperatura
9.
Syst Appl Microbiol ; 31(3): 190-205, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18501543

RESUMO

The two-phase leach-bed system is a biogas reactor system optimized for the utilization of energy crop silages at maximized loading rates under maintenance of an optimal microbial activity. In this study, a characterization of the methanogenic microbial community within this reactor system was conducted for the first time. Accordingly, effluent samples from the anaerobic filter and the silage digesting leach-bed reactors of both a laboratory-scale two-phase biogas reactor system and a scaled-up commercial on-farm pilot plant were investigated. In total, five Archaea-specific 16S rDNA libraries were constructed and analyzed by amplified rDNA restriction analysis (ARDRA), with subsequent phylogenetic analysis of nucleotide sequences for individual ARDRA patterns. A quantification of major methanogenic Archaea groups was conducted by real-time PCR. A total of 663 clones were analyzed and 45 operational taxonomic units (OTUs) related to methanogenic Archaea were detected. These OTUs were related to the orders Methanosarcinales, Methanomicrobiales and Methanobacteriales, as well as the hitherto uncultured CA-11 and ARC-I groups, and most of them occurred throughout all the compartments of both two-phase biogas reactors. The proportion of acetotrophic to hydrogenotrophic methanogens differed between the laboratory and the pilot scale system. A total of 56% of the clones from the 16S rDNA library derived from the laboratory biogas system were assigned to presumably acetotrophic members of Methanosarcinales. In contrast, these OTUs were less abundant in the 16S rDNA library derived from samples of the pilot plant. Therein, the most dominant OTUs were Methanoculleus-related OTUs, which presumably indicated the predominant presence of hydrogenotrophic methanogens. These findings were confirmed by group-specific quantitative real-time PCR assays. The results indicated that the fraction of acetotrophic and hydrogenotrophic methanogens within a biogas reactor caused certain variations, which may reflect varying substrate utilization during methanogenesis.


Assuntos
Biomassa , Grão Comestível/metabolismo , Grão Comestível/microbiologia , Euryarchaeota/classificação , Metano/metabolismo , Silagem/microbiologia , Anaerobiose , Reatores Biológicos , DNA Arqueal/análise , DNA Arqueal/isolamento & purificação , DNA Ribossômico/análise , Euryarchaeota/genética , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/metabolismo , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Mapeamento por Restrição , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...