Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Heart J Cardiovasc Imaging ; 23(5): 650-662, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34009283

RESUMO

AIMS: To characterize the dynamic nature of the left ventricular outflow tract (LVOT) geometry and flow rate in patients following transcatheter mitral valve replacement (TMVR) with anterior leaflet laceration (LAMPOON) and derive insights to help guide future patient selection. METHODS AND RESULTS: Time-resolved LVOT geometry and haemodynamics were analysed with post-procedure computed tomography and echocardiography in subjects (N = 19) from the LAMPOON investigational device exemption trial. A novel post hoc definition for LVOT obstruction was employed to account for systolic flow rate and quality of life improvement [obstruction was defined as LVOT gradient >30 mmHg or LVOT effective orifice area (EOA) ≤1.15 cm2]. The neo-LVOT and skirt neo-LVOT were observed to vary substantially in area throughout systole (64 ± 27% and 25 ± 14% change in area, respectively). The peak systolic flow rate occurred most commonly just prior to mid-systole, while minimum neo-LVOT (and skirt neo-LVOT) area occurred most commonly in early-diastole. Subjects with LVOT obstruction (n = 5) had smaller skirt neo-LVOT values across systole. Optimal thresholds for skirt neo-LVOT area were phase-specific (260, 210, 200, and 180 mm2 for early-systole, peak flow, mid-systole, and end-systole, respectively). CONCLUSION: The LVOT geometry and flow rate exhibit dynamic characteristics following TMVR with LAMPOON. Subjects with LVOT obstruction had smaller skirt neo-LVOT areas across systole. The authors recommend the use of phase-specific threshold values for skirt neo-LVOT area to guide future patient selection for this procedure. LVOT EOA is a 'flow-independent' metric which has the potential to aid in characterizing LVOT obstruction severity.


Assuntos
Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Obstrução do Fluxo Ventricular Externo , Cateterismo Cardíaco/métodos , Implante de Prótese de Valva Cardíaca/métodos , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Qualidade de Vida , Obstrução do Fluxo Ventricular Externo/diagnóstico por imagem , Obstrução do Fluxo Ventricular Externo/etiologia , Obstrução do Fluxo Ventricular Externo/cirurgia
2.
Ann Biomed Eng ; 49(6): 1449-1461, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33723704

RESUMO

In silico modeling has been proposed as a tool to simulate left ventricular (LV) outflow tract (LVOT) obstruction in patients undergoing transcatheter mitral valve replacement (TMVR). This study validated a simplified approach to simulate LV outflow hemodynamics in the setting of TMVR with anterior leaflet laceration, a clinical technique used to mitigate the risk of LVOT obstruction. Personalized, 3-dimensional computational fluid dynamics models were developed from computed tomography images of six patients who underwent TMVR with anterior leaflet laceration. LV outflow hemodynamics were simulated using the patient-specific anatomy and the peak systolic flow rate as boundary conditions. The peak outflow velocity, a clinically relevant hemodynamic metric, was extracted from each simulation (vsim-peak) and compared with the clinical measurement from Doppler echocardiography (vclin-peak) for validation. In silico models were successfully developed and implemented for all patients. The pre-processing time was 2 h per model and the simulation could be completed within 3 h. In three patients, the lacerated anterior leaflet exposed open cells of the transcatheter valve to flow. Good agreement was obtained between vsim-peak and vclin-peak (r = 0.97, p < 0.01) with average discrepancies of 5 ± 2% and 14 ± 1% for patients with exposed and unexposed cells of the transcatheter valve, respectively. The proposed in silico modeling paradigm therefore simulated LV outflow hemodynamics in a time-efficient manner and demonstrated good agreement with clinical measurements. Future studies should investigate the ability of this paradigm to support clinical applications.


Assuntos
Implante de Prótese de Valva Cardíaca , Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Obstrução do Fluxo Ventricular Externo/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Circulação Coronária , Feminino , Próteses Valvulares Cardíacas , Hemodinâmica , Humanos , Hidrodinâmica , Lacerações , Pessoa de Meia-Idade , Valva Mitral/cirurgia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA