Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850148

RESUMO

Polyvinyl chloride (PVC) gels have recently been found to exhibit mechanoelectrical transduction or sensing capabilities under compressive loading applications. This phenomenon is not wholly understood but has been characterized as an adsorption-like phenomena under varying amounts and types of plasticizers. A different polymer lattice structure has also been tested, thermoplastic polyurethane, which showed similar sensing characteristics. This study examines mechanical and electrical properties of these gel sensors and proposes a mathematical framework of the underlying mechanisms of mechanoelectrical transduction. COMSOL Multiphysics is used to show solid mechanics characteristics, electrostatic properties, and transport of interstitial plasticizer under compressive loading applications. The solid mechanics takes a continuum mechanics approach and includes a highly compressive Storakers material model for compressive loading applications. The electrostatics and transport properties include charge conservation and a Langmuir adsorption migration model with variable diffusion properties based on plasticizer properties. Results show both plasticizer concentration gradient as well as expected voltage response under varying amounts and types of plasticizers. Experimental work is also completed to show agreeance with the modeling results.

2.
Sensors (Basel) ; 20(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867161

RESUMO

A common design concept of the piezoelectric force sensor, which is to assemble a bump structure from a flat or fine columnar piezoelectric structure or to use a specific type of electrode, is quite limited. In this paper, we propose a new design of cylindrical piezoelectric sensors that can detect multidirectional forces. The proposed sensor consists of four row and four column sensors. The design of the sensor was investigated by the finite element method. The response of the sensor to various force directions was observed, and it was demonstrated that the direction of the force applied to the sensor could be derived from the signals of one row sensor and three column sensors. As a result, this sensor proved to be able to detect forces in the area of 225° about the central axis of the sensor. In addition, a cylindrical sensor was fabricated to verify the proposed sensor and a series of experiments were performed. The simulation and experimental results were compared, and the actual sensor response tended to be similar to the simulation.

3.
Sci Rep ; 9(1): 9658, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273271

RESUMO

A transparent and electroactive plasticized polyvinyl chloride (PVC) gel was investigated to use as a soft actuator for artificial muscle applications. PVC gels were prepared with varying plasticizer (dibutyl adipate, DBA) content. The prepared PVC gels were characterized using Fourier-transform infrared spectroscopy, thermogravimetric analysis, and dynamic mechanical analysis. The DBA content in the PVC gel was shown to have an inverse relationship with both the storage and loss modulus. The electromechanical performance of PVC gels was demonstrated for both single-layer and stacked multi-layer actuators. When voltage was applied to a single-layer actuator and then increased, the maximum displacement of PVC gels (for PVC/DBA ratios of 1:4, 1:6, and 1:8) was increased from 105.19, 123.67, and 135.55 µm (at 0.5 kV) to 140.93, 157.13, and 172.94 µm (at 1.0 kV) to 145.03, 191.34, and 212.84 µm (at 1.5 kV), respectively. The effects of graphene oxide (GO) addition in the PVC gel were also investigated. The inclusion of GO (0.1 wt.%) provided an approximate 20% enhancement of displacement and 41% increase in force production, and a 36% increase in power output for the PVC/GO gel over traditional plasticizer only PVC gel. The proposed PVC/GO gel actuator may have promising applications in artificial muscle, small mechanical devices, optics, and various opto-electro-mechanical devices due to its low-profile, transparency, and electrical response characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...