Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 147(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31862845

RESUMO

The development of tissues and organs requires close interaction of cells. To achieve this, cells express adhesion proteins such as the neural cell adhesion molecule (NCAM) or its Drosophila ortholog Fasciclin 2 (Fas2). Both are members of the Ig-domain superfamily of proteins that mediate homophilic adhesion. These proteins are expressed as isoforms differing in their membrane anchorage and their cytoplasmic domains. To study the function of single isoforms, we have conducted a comprehensive genetic analysis of Fas2 We reveal the expression pattern of all major Fas2 isoforms, two of which are GPI anchored. The remaining five isoforms carry transmembrane domains with variable cytoplasmic tails. We generated Fas2 mutants expressing only single isoforms. In contrast to the null mutation, which causes embryonic lethality, these mutants are viable, indicating redundancy among the different isoforms. Cell type-specific rescue experiments showed that glial-secreted Fas2 can rescue the Fas2 mutant phenotype to viability. This demonstrates that cytoplasmic Fas2 domains have no apparent essential functions and indicate that Fas2 has function(s) other than homophilic adhesion. In conclusion, our data suggest novel mechanistic aspects of a long-studied adhesion protein.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Transdução de Sinais , Animais , Adesão Celular , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Movimento Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Glicosilfosfatidilinositóis/metabolismo , Mutação/genética , Neuroglia/metabolismo , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Traqueia/embriologia , Traqueia/metabolismo
2.
Development ; 144(24): 4673-4683, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084807

RESUMO

The development of the nervous system requires tight control of cell division, fate specification and migration. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that affects different steps of cell cycle progression, as well as having postmitotic functions in nervous system development. It can therefore link different developmental stages in one tissue. The two adaptor proteins, Fizzy/Cdc20 and Fizzy-related/Cdh1, confer APC/C substrate specificity. Here, we show that two distinct modes of APC/C function act during Drosophila eye development. Fizzy/Cdc20 controls the early growth of the eye disc anlage and the concomitant entry of glial cells onto the disc. In contrast, fzr/cdh1 acts during neuronal patterning and photoreceptor axon growth, and subsequently affects neuron-glia interaction. To further address the postmitotic role of Fzr/Cdh1 in controlling neuron-glia interaction, we identified a series of novel APC/C candidate substrates. Four of our candidate genes are required for fzr/cdh1-dependent neuron-glia interaction, including the dynein light chain Dlc90F Taken together, our data show how different modes of APC/C activation can couple early growth and neuron-glia interaction during eye disc development.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Olho/embriologia , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Comunicação Celular/fisiologia , Ciclo Celular/fisiologia , Dineínas do Citoplasma/metabolismo , Dineínas , Células Fotorreceptoras de Invertebrados/citologia
3.
Nat Commun ; 7: 11266, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27072072

RESUMO

Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila melanogaster/metabolismo , Túbulos Renais/metabolismo , Microvilosidades/metabolismo , Animais , Transporte Biológico , Moléculas de Adesão Celular Neuronais/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Túbulos Renais/embriologia , Microtúbulos/metabolismo
4.
Wiley Interdiscip Rev Dev Biol ; 4(6): 623-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26178654

RESUMO

Glial cells are important constituents of the nervous system and a hallmark of these cells are their pronounced migratory abilities. In Drosophila, glial lineages have been well described and some of the molecular mechanisms necessary to guide migrating glial cells to their final target sites have been identified. With the onset of migration, glial cells are already specified into one of five main glial cell types. The perineurial and subperineurial glial cells are eventually located at the outer surface of the Drosophila nervous system and constitute the blood-brain barrier. The cortex glial cells ensheath all neuroblasts and their progeny and reside within the central nervous system. Astrocyte-like cells invade the neuropil to control synaptic function and ensheathing glial cells encase the entire neuropil. Within the peripheral nervous system, wrapping glial cells ensheath individual axons or axon fascicles. Here, we summarize the current knowledge on how differentiation of glial cells into the specific subtypes is orchestrated. Furthermore, we discuss sequencing data that will facilitate further analyses of glial differentiation in the fly nervous system.


Assuntos
Diferenciação Celular/fisiologia , Drosophila/fisiologia , Neuroglia/fisiologia , Animais , Axônios/fisiologia , Movimento Celular/fisiologia , Sistema Nervoso Central/fisiologia , Sistema Nervoso Periférico/fisiologia
5.
Sci Signal ; 6(300): ra96, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24194583

RESUMO

During development, differentiation is often initiated by the activation of different receptor tyrosine kinases (RTKs), which results in the tightly regulated activation of cytoplasmic signaling cascades. In the differentiation of neurons and glia in the developing Drosophila eye, we found that the proper intensity of RTK signaling downstream of fibroblast growth factor receptor (FGFR) or epidermal growth factor receptor required two mutually antagonistic feedback loops. We identified a positive feedback loop mediated by the Ras association (RA) domain-containing protein Rau that sustained Ras activity and counteracted the negative feedback loop mediated by Sprouty. Rau has two RA domains that together showed a binding preference for GTP (guanosine 5'-triphosphate)-loaded (active) Ras. Rau homodimerized and was found in large-molecular weight complexes. Deletion of rau in flies decreased the differentiation of retinal wrapping glia and induced a rough eye phenotype, similar to that seen in alterations of Ras signaling. Further, the expression of sprouty was repressed and that of rau was increased by the COUP transcription factor Seven-up in the presence of weak, but not constitutive, activation of FGFR. Together, our findings reveal another regulatory mechanism that controls the intensity of RTK signaling in the developing neural network in the Drosophila eye.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Olho/embriologia , Retroalimentação Fisiológica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Fatores de Transcrição COUP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/fisiologia , Olho/citologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Neuroglia/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Esteroides/metabolismo
6.
Cell ; 154(2): 351-64, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870124

RESUMO

Neuronal growth cones select synaptic partners through interactions with multiple cell surfaces in their environment. Many of these interactions are adhesive, yet it is unclear how growth cones integrate adhesive cues to direct their movements. Here, we examine the mechanisms that enable photoreceptors in the Drosophila visual system to choose synaptic partners. We demonstrate that the classical cadherin, N-cadherin, and an atypical cadherin, Flamingo, act redundantly to instruct the targeting choices made by every photoreceptor axon. These molecules gradually bias the spatial distribution of growth cone filopodia, polarizing each growth cone toward its future synaptic target before direct contact with the target occurs. We demonstrate that these molecules are localized to distinct subcellular domains and create a network of adhesive interactions distributed across many growth cones. Because this network comprises multiple redundant interactions, a complex wiring diagram can be constructed with extraordinary fidelity, suggesting a general principle.


Assuntos
Caderinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Cones de Crescimento , Células Fotorreceptoras de Invertebrados/metabolismo , Sinapses , Animais , Axônios/metabolismo , Cones de Crescimento/metabolismo , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...