Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 197: 106536, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763444

RESUMO

CLN8 is an endoplasmic reticulum cargo receptor and a regulator of lysosome biogenesis whose loss of function leads to neuronal ceroid lipofuscinosis. CLN8 has been linked to autophagy and lipid metabolism, but much remains to be learned, and there are no therapies acting on the molecular signatures in this disorder. The present study aims to characterize the molecular pathways involved in CLN8 disease and, by pinpointing altered ones, to identify potential therapies. To bridge the gap between cell and mammalian models, we generated a new zebrafish model of CLN8 deficiency, which recapitulates the pathological features of the disease. We observed, for the first time, that CLN8 dysfunction impairs autophagy. Using autophagy modulators, we showed that trehalose and SG2 are able to attenuate the pathological phenotype in mutant larvae, confirming autophagy impairment as a secondary event in disease progression. Overall, our successful modeling of CLN8 defects in zebrafish highlights this novel in vivo model's strong potential as an instrument for exploring the role of CLN8 dysfunction in cellular pathways, with a view to identifying small molecules to treat this rare disease.

2.
Lab Chip ; 24(4): 764-775, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38193588

RESUMO

Multifunctional micromanipulation systems have garnered significant attention due to the growing interest in biological and medical research involving model organisms like zebrafish (Danio rerio). Here, we report a novel acoustofluidic rotational micromanipulation system that offers rapid trapping, high-speed rotation, multi-angle imaging, and 3D model reconstruction of zebrafish larvae. An ultrasound-activated oscillatory glass capillary is used to trap and rotate a zebrafish larva. Simulation and experimental results demonstrate that both the vibrating mode and geometric placement of the capillary contribute to the developed polarized vortices along the long axis of the capillary. Given its capacities for easy-to-operate, stable rotation, avoiding overheating, and high-throughput manipulation, our system poses the potential to accelerate zebrafish-directed biomedical research.


Assuntos
Micromanipulação , Peixe-Zebra , Animais , Larva , Rotação
3.
Nat Biotechnol ; 42(1): 65-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36997681

RESUMO

Imaging large, cleared samples requires microscope objectives that combine a large field of view (FOV) with a long working distance (WD) and a high numerical aperture (NA). Ideally, such objectives should be compatible with a wide range of immersion media, which is challenging to achieve with conventional lens-based objective designs. Here we introduce the multi-immersion 'Schmidt objective' consisting of a spherical mirror and an aspherical correction plate as a solution to this problem. We demonstrate that a multi-photon variant of the Schmidt objective is compatible with all homogeneous immersion media and achieves an NA of 1.08 at a refractive index of 1.56, 1.1-mm FOV and 11-mm WD. We highlight its versatility by imaging cleared samples in various media ranging from air and water to benzyl alcohol/benzyl benzoate, dibenzyl ether and ethyl cinnamate and by imaging of neuronal activity in larval zebrafish in vivo. In principle, the concept can be extended to any imaging modality, including wide-field, confocal and light-sheet microscopy.


Assuntos
Telescópios , Animais , Imersão , Microscopia/métodos , Peixe-Zebra
4.
Elife ; 122023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227126

RESUMO

Genetic studies in human and mice have established a dual role for Vsx genes in retina development: an early function in progenitors' specification, and a later requirement for bipolar-cells fate determination. Despite their conserved expression patterns, it is currently unclear to which extent Vsx functions are also conserved across vertebrates, as mutant models are available only in mammals. To gain insight into vsx function in teleosts, we have generated vsx1 and vsx2 CRISPR/Cas9 double knockouts (vsxKO) in zebrafish. Our electrophysiological and histological analyses indicate severe visual impairment and bipolar cells depletion in vsxKO larvae, with retinal precursors being rerouted toward photoreceptor or Müller glia fates. Surprisingly, neural retina is properly specified and maintained in mutant embryos, which do not display microphthalmia. We show that although important cis-regulatory remodelling occurs in vsxKO retinas during early specification, this has little impact at a transcriptomic level. Our observations point to genetic redundancy as an important mechanism sustaining the integrity of the retinal specification network, and to Vsx genes regulatory weight varying substantially among vertebrate species.


Assuntos
Proteínas de Homeodomínio , Peixe-Zebra , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Homeodomínio/metabolismo , Retina/metabolismo , Genes Homeobox , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Mutação , Mamíferos/genética , Fatores de Transcrição/metabolismo , Proteínas do Olho/metabolismo
5.
Front Mol Neurosci ; 16: 1131093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008786

RESUMO

Membrane guanylyl cyclase receptors are important regulators of local cGMP production, critically influencing cell growth and differentiation as well as ion transport, blood pressure and calcium feedback of vertebrate phototransduction. Currently, seven different subtypes of membrane guanylyl cyclase receptors have been characterized. These receptors have tissue specific expression and are activated either by small extracellular ligands, changing CO2 concentrations or, in the case of visual guanylyl cyclases, intracellularly interacting Ca2+-dependent activating proteins. In this report, we focus on the visual guanylyl cyclase receptors (GCs) GC-E (gucy2d/e) and GC-F (gucy2f) and their activating proteins (GCAP1/2/3; guca1a/b/c). While gucy2d/e has been detected in all analyzed vertebrates, GC-F receptors are missing in several clades (reptiles, birds, and marsupials) and/or individual species. Interestingly, the absence of GC-F in highly visual sauropsida species with up to 4 different cone-opsins is compensated by an increased number of guanylyl cyclase activating proteins, whereas in nocturnal or visually impaired species with reduced spectral sensitivity it is consolidated by the parallel inactivation of these activators. In mammals, the presence of GC-E and GC-F is accompanied by the expression of one to three GCAPs, whereas in lizards and birds, up to five different GCAPs are regulating the activity of the single GC-E visual membrane receptor. In several nearly blind species, a single GC-E enzyme is often accompanied by a single variant of GCAP, suggesting that one cyclase and one activating protein are both sufficient and required for conferring the basic detection of light.

6.
Methods Cell Biol ; 175: 97-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967148

RESUMO

Vision is one of our dominant senses and its loss has a profound impact on the life quality of affected individuals. Highly specialized neurons in the retina called photoreceptors convert photons into neuronal responses. This conversion of photons is mediated by light sensitive opsin proteins, which are found in the outer segments of the photoreceptors. These outer segments are highly specialized primary cilia, explaining why retinal dystrophy is a key feature of ciliopathies, a group of diseases resulting from abnormal and dysfunctional cilia. Therefore, research on ciliopathies often includes the analysis of the retina with special focus on the photoreceptor and its outer segment. In the last decade, the zebrafish has emerged as an excellent model organism to study human diseases, in particular with respect to the retina. The cone-rich retina of zebrafish resembles the fovea of the human macula and thus represents an excellent model to study human retinal diseases. Here we give detailed guidance on how to analyze the morphological and ultra-structural integrity of photoreceptors in the zebrafish using various histological and imaging techniques. We further describe how to conduct functional analysis of the retina by electroretinography and how to prepare isolated outer segment fractions for different -omic approaches. These different methods allow a comprehensive analysis of photoreceptors, helping to enhance our understanding of the molecular and structural basis of ciliary function in health and of the consequences of its dysfunction in disease.


Assuntos
Ciliopatias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Cílios/metabolismo , Retina , Proteínas de Peixe-Zebra/metabolismo , Ciliopatias/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo
7.
Bio Protoc ; 13(4): e4618, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36845534

RESUMO

The zebrafish retina is a canonical vertebrate retina. Since the past few years, with the continually growing genetic toolbox and imaging techniques, zebrafish plays a crucial role in retinal research. This protocol describes a method to quantitatively evaluate the expression of Arrestin3a (Arr3a) and G-protein receptor kinase7a (Grk7a) in the adult zebrafish retina at protein levels by infrared fluorescence western blot. Our protocol can be easily adapted to measure protein levels in additional zebrafish tissues.

8.
Biology (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275725

RESUMO

Optokinetic reflex (OKR) assays in zebrafish models are a valuable tool for studying a diverse range of ophthalmological and neurological conditions. Despite its increasing popularity in recent years, there are no clear reporting guidelines for the assay. Following reporting guidelines in research enhances reproducibility, reduces bias, and mitigates underreporting and poor methodologies in published works. To better understand optimal reporting standards for an OKR assay in zebrafish, we performed a systematic literature review exploring the animal, environmental, and technical factors that should be considered. Using search criteria from three online databases, a total of 109 research papers were selected for review. Multiple crucial factors were identified, including larval characteristics, sample size, fixing method, OKR set-up, distance of stimulus, detailed stimulus parameters, eye recording, and eye movement analysis. The outcome of the literature analysis highlighted the insufficient information provided in past research papers and the lack of a systematic way to present the parameters related to each of the experimental factors. To circumvent any future errors and champion robust transparent research, we have created the zebrafish optokinetic (ZOK) reflex minimal reporting guideline.

9.
Front Mol Neurosci ; 15: 1104424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561893
10.
Epilepsia ; 63(10): 2543-2560, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36222083

RESUMO

OBJECTIVE: The switch between nonseizure and seizure states involves profound alterations in network excitability and synchrony. In this study, we aimed to identify and compare features of neural excitability and dynamics across multiple zebrafish seizure and epilepsy models. METHODS: Inspired by video-electroencephalographic recordings in patients, we developed a framework to study spontaneous and photically evoked neural and locomotor activity in zebrafish larvae, by combining high-throughput behavioral tracking and whole-brain in vivo two-photon calcium imaging. RESULTS: Our setup allowed us to dissect behavioral and physiological features that are divergent or convergent across multiple models. We observed that spontaneous locomotor and neural activity exhibit great diversity across models. Nonetheless, during photic stimulation, hyperexcitability and rapid response dynamics were well conserved across multiple models, highlighting the reliability of photically evoked activity for high-throughput assays. Intriguingly, in several models, we observed that the initial elevated photic response is often followed by rapid decay of neural activity and a prominent depressed state. Elevated photic response and following depressed state in seizure-prone networks are significantly reduced by the antiseizure medication valproic acid. Finally, rapid decay and depression of neural activity following photic stimulation temporally overlap with slow recruitment of astroglial calcium signals that are enhanced in seizure-prone networks. SIGNIFICANCE: We argue that fast decay of neural activity and depressed states following photic response are likely due to homeostatic mechanisms triggered by excessive neural activity. An improved understanding of the interplay between elevated and depressed excitability states might suggest tailored epilepsy therapies.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Cálcio , Reprodutibilidade dos Testes , Convulsões , Ácido Valproico
11.
Nat Commun ; 13(1): 6370, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289227

RESUMO

Liquid manipulation is the foundation of most laboratory processes. For macroscale liquid handling, both do-it-yourself and commercial robotic systems are available; however, for microscale, reagents are expensive and sample preparation is difficult. Over the last decade, lab-on-a-chip (LOC) systems have come to serve for microscale liquid manipulation; however, lacking automation and multi-functionality. Despite their potential synergies, each has grown separately and no suitable interface yet exists to link macro-level robotics with micro-level LOC or microfluidic devices. Here, we present a robot-assisted acoustofluidic end effector (RAEE) system, comprising a robotic arm and an acoustofluidic end effector, that combines robotics and microfluidic functionalities. We further carried out fluid pumping, particle and zebrafish embryo trapping, and mobile mixing of complex viscous liquids. Finally, we pre-programmed the RAEE to perform automated mixing of viscous liquids in well plates, illustrating its versatility for the automatic execution of chemical processes.


Assuntos
Robótica , Animais , Peixe-Zebra , Dispositivos Lab-On-A-Chip , Automação , Microfluídica
12.
Front Mol Neurosci ; 15: 1004518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176960

RESUMO

Fast three-dimensional imaging of freely-swimming zebrafish is essential to understand the link between neuronal activity and behavioral changes during epileptic seizures. Studying the complex spatiotemporal patterns of neuronal activity at the whole-brain or -body level typically requires physical restraint, thus hindering the observation of unperturbed behavior. Here we report on real-time volumetric optoacoustic imaging of aberrant circular swimming activity and calcium transients in freely behaving zebrafish larvae, continuously covering their motion across an entire three-dimensional region. The high spatiotemporal resolution of the technique enables capturing ictal-like epileptic seizure events and quantifying their propagation speed, independently validated with simultaneous widefield fluorescence recordings. The work sets the stage for discerning functional interconnections between zebrafish behavior and neuronal activity for studying fundamental mechanisms of epilepsy and in vivo validation of treatment strategies.

13.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35980363

RESUMO

Visualizing cell shapes and interactions of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated in vivo cell tracking and mapping neuronal connectivity. Yet integrating multi-fluorophore information into the context of developing zebrafish tissues is challenging given their cytoplasmic localization and spectral incompatibility with common fluorescent markers. Inspired by Drosophila Raeppli, we developed FRaeppli (Fish-Raeppli) by expressing bright membrane- or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31 integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. We demonstrate the suitability of FRaeppli for live imaging of complex internal organs, such as the liver, and have tailored hyperspectral protocols for time-efficient acquisition. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting common developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and lineages at single-cell resolution in zebrafish.


Assuntos
Integrases , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo , Peixe-Zebra/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(29): e2117090119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858306

RESUMO

Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport. This microexon program is regulated by Srrm3, a paralog of the neural microexon regulator Srrm4. Despite the fact that both proteins positively regulate retina microexons in vitro, only Srrm3 is highly expressed in mature photoreceptors. Its deletion in zebrafish results in widespread down-regulation of microexon inclusion from early developmental stages, followed by other transcriptomic alterations, severe photoreceptor defects, and blindness. These results shed light on the transcriptomic specialization and functionality of photoreceptors, uncovering unique cell type-specific roles for Srrm3 and microexons with implications for retinal diseases.


Assuntos
Proteínas , Segmento Externo das Células Fotorreceptoras da Retina , Fatores de Processamento de Serina-Arginina , Visão Ocular , Animais , Éxons , Deleção de Genes , Humanos , Proteínas/genética , Proteínas/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/fisiologia , Transcriptoma , Visão Ocular/genética , Visão Ocular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
15.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35514229

RESUMO

Manganese neurotoxicity is a hallmark of hypermanganesemia with dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of slc39a14-/- mutant zebrafish that were exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that Ca2+ dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity. Consistent with this interpretation, MnCl2 exposure led to decreased whole-animal Ca2+ levels, locomotor defects and changes in neuronal activity within the telencephalon and optic tectum. In accordance with reduced tectal activity, slc39a14-/- zebrafish showed changes in visual phototransduction gene expression, absence of visual background adaptation and a diminished optokinetic reflex. Finally, numerous differentially expressed genes in mutant larvae normalised upon MnCl2 treatment indicating that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. Overall, we assembled a comprehensive set of genes that mediate manganese-systemic responses and found a highly correlated and modulated network associated with Ca2+ dyshomeostasis and cellular stress. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Transporte de Cátions , Distonia , Animais , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Distonia/genética , Íons/metabolismo , Manganês/metabolismo , Manganês/toxicidade , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
Nat Commun ; 13(1): 1282, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277505

RESUMO

Primary cilia are key sensory organelles whose dysfunction leads to ciliopathy disorders such as Bardet-Biedl syndrome (BBS). Retinal degeneration is common in ciliopathies, since the outer segments (OSs) of photoreceptors are highly specialized primary cilia. BBS1, encoded by the most commonly mutated BBS-associated gene, is part of the BBSome protein complex. Using a bbs1 zebrafish mutant, we show that retinal development and photoreceptor differentiation are unaffected by Bbs1-loss, supported by an initially unaffected transcriptome. Quantitative proteomics and lipidomics on samples enriched for isolated OSs show that Bbs1 is required for BBSome-complex stability and that Bbs1-loss leads to accumulation of membrane-associated proteins in OSs, with enrichment in proteins involved in lipid homeostasis. Disruption of the tightly regulated OS lipid composition with increased OS cholesterol content are paralleled by early functional visual deficits, which precede progressive OS morphological anomalies. Our findings identify a role for Bbs1/BBSome in OS lipid homeostasis, suggesting a pathomechanism underlying retinal degeneration in BBS.


Assuntos
Síndrome de Bardet-Biedl , Animais , Síndrome de Bardet-Biedl/genética , Cílios/metabolismo , Lipídeos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Peixe-Zebra/metabolismo
17.
Glia ; 70(1): 196-214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716961

RESUMO

Astroglial excitatory amino acid transporter 2 (EAAT2, GLT-1, and SLC1A2) regulates the duration and extent of neuronal excitation by removing glutamate from the synaptic cleft. Hence, an impairment in EAAT2 function could lead to an imbalanced brain network excitability. Here, we investigated the functional alterations of neuronal and astroglial networks associated with the loss of function in the astroglia predominant eaat2a gene in zebrafish. We observed that eaat2a-/- mutant zebrafish larvae display recurrent spontaneous and light-induced seizures in neurons and astroglia, which coincide with an abrupt increase in extracellular glutamate levels. In stark contrast to this hyperexcitability, basal neuronal and astroglial activity was surprisingly reduced in eaat2a-/- mutant animals, which manifested in decreased overall locomotion. Our results reveal an essential and mechanistic contribution of EAAT2a in balancing brain excitability, and its direct link to epileptic seizures.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Astrócitos/metabolismo , Epilepsia/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo , Peixe-Zebra/metabolismo
18.
Curr Biol ; 31(23): R1525-R1527, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875242

RESUMO

Environmental light carries spectral information, perceived as color. A new study in zebrafish shows how spectral information decoded by the cones' photoreceptors is transformed by retinal bipolar cells, adding a temporal component to the signal and establishing a third opponent axis for color vision.


Assuntos
Visão de Cores , Animais , Percepção de Cores , Retina , Células Fotorreceptoras Retinianas Cones , Peixe-Zebra
19.
Cell Chem Biol ; 28(11): 1638-1647.e4, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34592171

RESUMO

Asymmetric inheritance of sister chromatids has long been predicted to be linked to discordant fates of daughter cells and even hypothesized to minimize accumulation of mutations in stem cells. Here, we use (2'S)-2'-deoxy-2'-fluoro-5-ethynyluridine (F-ara-EdU), bromodeoxyuridine (BrdU), and light sheet microscopy to track embryonic DNA in whole zebrafish. Larval development results in rapid depletion of older DNA template strands from stem cell niches in the retina, brain, and intestine. Prolonged label retention occurs in quiescent progenitors that resume replication in later development. High-resolution microscopy reveals no evidence of asymmetric template strand segregation in >100 daughter cell pairs, making it improbable that asymmetric DNA segregation prevents mutational burden according to the immortal strand hypothesis in developing zebrafish.


Assuntos
DNA/metabolismo , Animais , Peixe-Zebra/crescimento & desenvolvimento
20.
Front Mol Neurosci ; 14: 656000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935647

RESUMO

Neurons have high metabolic demands that are almost exclusively met by glucose supplied from the bloodstream. Glucose is utilized in complex metabolic interactions between neurons and glia cells, described by the astrocyte-neuron lactate shuttle (ANLS) hypothesis. The neural retina faces similar energy demands to the rest of the brain, with additional high anabolic needs to support continuous renewal of photoreceptor outer segments. This demand is met by a fascinating variation of the ANLS in which photoreceptors are the central part of a metabolic landscape, using glucose and supplying surrounding cells with metabolic intermediates. In this review we summarize recent evidence on how neurons, in particular photoreceptors, meet their energy and biosynthetic requirements by comprising a metabolic landscape of interdependent cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...