Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Oncol ; : JCO2302281, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652878

RESUMO

PURPOSE: Type 2 diabetes mellitus (T2D) is a prevalent long-term complication of treatment in survivors of childhood cancer, with marked racial/ethnic differences in burden. In this study, we investigated trans-ancestral genetic risks for treatment-related T2D. PATIENTS AND METHODS: Leveraging whole-genome sequencing data from the St Jude Lifetime Cohort (N = 3,676, 304 clinically ascertained cases), we conducted ancestry-specific genome-wide association studies among survivors of African and European genetic ancestry (AFR and EUR, respectively) followed by trans-ancestry meta-analysis. Trans-/within-ancestry replication including data from the Childhood Cancer Survivor Study (N = 5,965) was required for prioritization. Three external general population T2D polygenic risk scores (PRSs) were assessed, including multiancestry PRSs. Treatment risk effect modification was evaluated for prioritized loci. RESULTS: Four novel T2D risk loci showing trans-/within-ancestry replication evidence were identified, with three loci achieving genome-wide significance (P < 5 × 10-8). Among these, common variants at 5p15.2 (LINC02112), 2p25.3 (MYT1L), and 19p12 (ZNF492) showed evidence of modifying alkylating agent-related T2D risk in both ancestral groups, but showed disproportionately greater risk in AFR survivors (AFR odds ratios [ORs], 3.95-17.81; EUR ORs, 2.37-3.32). In survivor-specific RNA-sequencing data (N = 207), the 19p12 locus variant was associated with greater ZNF492 expression dysregulation after exposures to alkylators. Elevated T2D risks across ancestry groups were only observed with increasing values for multiancestry T2D PRSs and were especially increased among survivors treated with alkylators (top v bottom quintiles: ORAFR, 20.18; P = .023; OREUR, 13.44; P = 1.3 × 10-9). CONCLUSION: Our findings suggest therapy-related genetic risks contribute to the increased T2D burden among non-Hispanic Black childhood cancer survivors. Additional study of how therapy-related genetic susceptibility contributes to this disparity is needed.

2.
JACC CardioOncol ; 6(1): 38-50, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510289

RESUMO

Background: Genome-wide association studies and candidate gene association studies have identified more than 180 genetic variants statistically associated with anthracycline-induced cardiotoxicity (AIC). However, the lack of functional validation has hindered the clinical translation of these findings. Objectives: The aim of this study was to functionally validate all genes associated with AIC using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Methods: Through a systemic literature search, 80 genes containing variants significantly associated with AIC were identified. Additionally, 3 more genes with potential roles in AIC (GSTM1, CBR1, and ERBB2) were included. Of these, 38 genes exhibited expression in human fetal heart, adult heart, and hiPSC-CMs. Using clustered regularly interspaced short palindromic repeats/Cas9-based genome editing, each of these 38 genes was systematically knocked out in control hiPSC-CMs, and the resulting doxorubicin-induced cardiotoxicity (DIC) phenotype was assessed using hiPSC-CMs. Subsequently, functional assays were conducted for each gene knockout on the basis of hypothesized mechanistic implications in DIC. Results: Knockout of 26 genes increased the susceptibility of hiPSC-CMs to DIC. Notable genes included efflux transporters (ABCC10, ABCC2, ABCB4, ABCC5, and ABCC9), well-established DIC-associated genes (CBR1, CBR3, and RAC2), and genome-wide association study-discovered genes (RARG and CELF4). Conversely, knockout of ATP2B1, HNMT, POR, CYBA, WDR4, and COL1A2 had no significant effect on the in vitro DIC phenotype of hiPSC-CMs. Furthermore, knockout of the uptake transporters (SLC28A3, SLC22A17, and SLC28A1) demonstrated a protective effect against DIC. Conclusions: The present findings establish a comprehensive platform for the functional validation of DIC-associated genes, providing insights for future studies in DIC variant associations and potential mechanistic targets for the development of cardioprotective drugs.

3.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333357

RESUMO

Type 2 diabetes mellitus (T2D) is an established late effect of treatment for childhood cancer. Leveraging detailed cancer treatment and whole-genome sequencing data among survivors of childhood cancer of European (EUR) and African (AFR) genetic ancestry in the St. Jude Lifetime Cohort (N=3,676; 304 cases), five novel diabetes mellitus (DM) risk loci were identified with independent trans-/within-ancestry replication, including in 5,965 survivors of the Childhood Cancer Survivor Study. Among these, common risk variants at 5p15.2 ( LINC02112 ), 2p25.3 ( MYT1L ), and 19p12 ( ZNF492 ) modified alkylating agent-related risks across ancestry groups, but AFR survivors with risk alleles experienced disproportionately greater risk of DM (AFR, variant ORs: 3.95-17.81; EUR, variant ORs: 2.37-3.32). Novel risk locus XNDC1N was identified in the first genome-wide DM rare variant burden association analysis in survivors (OR=8.65, 95% CI: 3.02-24.74, P=8.1×10 -6 ). Lastly, a general-population 338-variant multi-ancestry T2D polygenic risk score was informative for DM risk in AFR survivors, and showed elevated DM odds after alkylating agent exposures (quintiles: combined OR EUR =8.43, P=1.1×10 -8 ; OR AFR =13.85, P=0.033). This study supports future precision diabetes surveillance/survivorship care for all childhood cancer survivors, including those with AFR ancestry.

5.
Viruses ; 13(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34578448

RESUMO

Sunflowers (Helianthus annuus L.) are susceptible to multiple diseases in field production. In this study, we collected diseased sunflower leaves in fields located in South Dakota, USA, for virome investigation. The leaves showed visible symptoms on the foliage, indicating phomopsis and rust infections. To identify the viruses potentially associated with the disease diagnosed, symptomatic leaves were obtained from diseased plants. Total RNA was extracted corresponding to each disease diagnosed to generate libraries for paired-end high throughput sequencing. Short sequencing reads were assembled de novo and the contigs with similarities to viruses were identified by aligning against a custom protein database. We report the discovery of two novel mitoviruses, four novel partitiviruses, one novel victorivirus, and nine novel totiviruses based on similarities to RNA-dependent RNA polymerases and capsid proteins. Contigs similar to bean yellow mosaic virus and Sclerotinia sclerotiorum hypovirulence-associated DNA virus were also detected. To the best of our knowledge, this is the first report of direct metatranscriptomics discovery of viruses associated with fungal infections of sunflowers bypassing culturing. These newly discovered viruses represent a natural genetic resource from which we can further develop potential biopesticide to control sunflower diseases.


Assuntos
Micovírus/genética , Helianthus/microbiologia , Helianthus/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Viroma , Micovírus/classificação , Micovírus/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Perfilação da Expressão Gênica , Genoma Viral , Microbiota , Filogenia , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Totivirus/classificação , Totivirus/genética , Totivirus/isolamento & purificação
6.
Sci Rep ; 11(1): 9200, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911170

RESUMO

Crop rotation is an important management tactic that farmers use to manage crop production and reduce pests and diseases. Long-term crop rotations may select groups of microbes that form beneficial or pathogenic associations with the following crops, which could explain observed crop yield differences with different crop sequences. To test this hypothesis, we used two locations each with four long-term (12-14-year), replicated, rotation treatments: continuous corn (CCC), corn/corn/soybean (SCC), corn/soybean (CSC), and soybean/corn (SCS). Afterwards, soybean was planted, and yield and soil health indicators, bulk soil microbiome, and soybean root-associated microbiome were assessed. Soybean yields, as well as soil protein, and POXC as soil health indicators were higher following CCC than in the other three treatments at both locations. A bacterial taxon in family JG30-KF-AS9 was enriched in CCC, whereas Microvirga, Rhodomicrobium, and Micromonosporaceae were enriched in SCS. Several ascomycetes explain lowered yield as soybean pathogens in SCS. Surprisingly, Tumularia, Pyrenochaetopsis and Schizothecium were enriched in soybean roots after CCC, suggesting corn pathogens colonizing soybean roots as nonpathogens. Our finding of associations between soil health indicators related to microbiomes and soybean yield has wide-ranging implications, opening the possibility of manipulating microbiomes to improve crop yield potential.

7.
Front Microbiol ; 11: 891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528425

RESUMO

Gut microbiome plays an important role in adult human health and diseases. However, how nutritional factors shape the initial colonization of gut bacteria in infants, especially in preterm infants, is still not completely known. In this study, we compared the effects of feeding with mothers' own breast milk (MBM) and formula on the initial composition and gene expression of gut bacteria in moderate-late preterm infants. Fecal samples were collected from ten formula-fed and ten MBM healthy infants born between 32 and 37 weeks' gestation after they reached full-volume enteral feedings. Total DNAs were extracted from fecal samples for amplicon sequencing of 16S ribosomal RNA (rRNA) gene and total RNA with rRNA depletion for metatranscriptome RNA-Seq 16S rRNA gene amplicon sequencing results showed that the alpha-diversity was similar between the MBM- and formula-fed preterm infants, but the beta-diversity showed a significant difference in composition (p = 0.002). The most abundant taxa were Veillonella (18.4%) and Escherichia/Shigella (15.2%) in MBM infants, whereas the most abundant taxa of formula-fed infants were Streptococcus (18.6%) and Klebsiella (17.4%). The genera Propionibacterium, Streptococcus, and Finegoldia and order Clostridiales had significantly higher relative abundance in the MBM group than the formula group, whereas bacteria under family Enterobacteriaceae, genera Enterococcus and Veillonella, and class Bacilli were more abundant in the formula group. In general, microbiomes from both diet groups exhibited high functional levels of catalytic activity and metabolic processing when analyzed for gene ontology using a comparative metatranscriptome approach. Statistically, the microbial genes in the MBM group had an upregulation in expression related to glycine reductase, periplasmic acid stress response in Enterobacteria, acid resistance mechanisms, and L-fucose utilization. In contrast, the formula-fed group had upregulations in genes associated with methionine and valine degradation functions. Our data suggest that the nutritional source plays a role in shaping the moderate-late preterm gut microbiome as evidenced by the differences in bacterial composition and gene expression profiles in the fecal samples. The MBM group enriched Propionibacterium. Glycine reductase was highly upregulated in the microbiota from MBM along with the upregulated acid stress tolerance genes, suggesting that the intensity of fermentation process was enhanced.

8.
Front Plant Sci ; 10: 976, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440265

RESUMO

RNA silencing or RNA interference (RNAi) is an essential mechanism in animals, fungi, and plants that functions in gene regulation and defense against foreign nucleic acids. In fungi, RNA silencing has been shown to function primarily in defense against invasive nucleic acids. We previously determined that mycoviruses are triggers and targets of RNA silencing in Sclerotinia sclerotiorum. However, recent progresses in RNAi or dsRNA-based pest control requires more detailed characterization of the RNA silencing pathways in S. sclerotiorum to investigate the utility of dsRNA-based strategy for white mold control. This study elucidates the roles of argonaute enzymes, agl-2 and agl-4, in small RNA metabolism in S. sclerotiorum. Gene disruption mutants of agl-2 and agl-4 were compared for changes in phenotype, virulence, viral susceptibility, and small RNA profiles. The Δagl-2 mutant but not the Δagl-4 mutant had significantly slower growth and virulence prior to virus infection. Similarly, the Δagl-2 mutant but not the Δagl-4 mutant, showed greater debilitation under virus infection compared to uninfected strains. The responses were confirmed in complementation studies and revealed the antiviral role of agl-2. Gene disruption mutants of agl-2, agl-4, Dicer-like (dcl)-1, and dcl-2 did not change the stability of the most abundant endogenous small RNAs, which suggests the existence of alternative enzymes/pathways for small RNA biogenesis in S. sclerotiorum. Furthermore, in vitro synthesized dsRNA targeting agl-2 showed a significantly reduced average lesion diameter (P < 0.05) on canola leaves with agl-2 down-regulated compared to controls. This is the first report describing the effectiveness of RNA pesticides targeting S. sclerotiorum RNA silencing pathway for the control of the economically important pathogen.

9.
Plants (Basel) ; 8(2)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678298

RESUMO

Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that regulate biotic and abiotic stresses in plants through signaling cascades comprised of three major subfamilies: MAP Kinase (MPK), MAPK Kinase (MKK), and MAPKK Kinase (MKKK). The main objectives of this research were to conduct genome-wide identification of MAPK genes in Helianthus annuus and examine functional divergence of these genes in relation to those in nine other plant species (Amborella trichopoda, Aquilegia coerulea, Arabidopsis thaliana, Daucus carota, Glycine max, Oryza sativa, Solanum lycopersicum, Sphagnum fallax, and Vitis vinifera), representing diverse taxonomic groups of the Plant Kingdom. A Hidden Markov Model (HMM) profile of the MAPK genes utilized reference sequences from A. thaliana and G. max, yielding a total of 96 MPKs and 37 MKKs in the genomes of A. trichopoda, A. coerulea, C. reinhardtii, D. carota, H. annuus, S. lycopersicum, and S. fallax. Among them, 28 MPKs and eight MKKs were confirmed in H. annuus. Phylogenetic analyses revealed four clades within each subfamily. Transcriptomic analyses showed that at least 19 HaMPK and seven HaMKK genes were induced in response to salicylic acid (SA), sodium chloride (NaCl), and polyethylene glycol (Peg) in leaves and roots. Of the seven published sunflower microRNAs, five microRNA families are involved in targeting eight MPKs. Additionally, we discussed the need for using MAP Kinase nomenclature guidelines across plant species. Our identification and characterization of MAP Kinase genes would have implications in sunflower crop improvement, and in advancing our knowledge of the diversity and evolution of MAPK genes in the Plant Kingdom.

10.
Viruses ; 10(12)2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545059

RESUMO

Arbuscular mycorrhizal fungi (AMF), including Rhizophagus spp., can play important roles in nutrient cycling of the rhizosphere. However, the effect of virus infection on AMF's role in nutrient cycling cannot be determined without first knowing the diversity of the mycoviruses in AMF. Therefore, in this study, we sequenced the R. irregularis isolate-09 due to its previously demonstrated high efficiency in increasing the N/P uptake of the plant. We identified one novel mitovirus contig of 3685 bp, further confirmed by reverse transcription-PCR. Also, publicly available Rhizophagus spp. RNA-Seq data were analyzed to recover five partial virus sequences from family Narnaviridae, among which four were from R. diaphanum MUCL-43196 and one was from R. irregularis strain-C2 that was similar to members of the Mitovirus genus. These contigs coded genomes larger than the regular mitoviruses infecting pathogenic fungi and can be translated by either a mitochondrial translation code or a cytoplasmic translation code, which was also reported in previously found mitoviruses infecting mycorrhizae. The five newly identified virus sequences are comprised of functionally conserved RdRp motifs and formed two separate subclades with mitoviruses infecting Gigasporamargarita and Rhizophagusclarus, further supporting virus-host co-evolution theory. This study expands our understanding of virus diversity. Even though AMF is notably hard to investigate due to its biotrophic nature, this study demonstrates the utility of whole root metatranscriptome.


Assuntos
Micovírus/genética , Perfilação da Expressão Gênica , Micorrizas/virologia , Raízes de Plantas/genética , Micovírus/isolamento & purificação , Genoma Viral , Raízes de Plantas/microbiologia , Plantas/microbiologia , Simbiose
11.
Viruses ; 10(12)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558121

RESUMO

Mycoviruses belonging to the family Hypoviridae cause persistent infection of many different host fungi. We previously determined that the white mold fungus, Sclerotiniasclerotiorum, infected with Sclerotinia sclerotiorum hypovirus 2-L (SsHV2-L) exhibits reduced virulence, delayed/reduced sclerotial formation, and enhanced production of aerial mycelia. To gain better insight into the cellular basis for these changes, we characterized changes in mRNA and small RNA (sRNA) accumulation in S.sclerotiorum to infection by SsHV2-L. A total of 958 mRNAs and 835 sRNA-producing loci were altered after infection by SsHV2-L, among which >100 mRNAs were predicted to encode proteins involved in the metabolism and trafficking of carbohydrates and lipids. Both S. sclerotiorum endogenous and virus-derived sRNAs were predominantly 22 nt in length suggesting one dicer-like enzyme cleaves both. Novel classes of endogenous small RNAs were predicted, including phasiRNAs and tRNA-derived small RNAs. Moreover, S. sclerotiorum phasiRNAs, which were derived from noncoding RNAs and have the potential to regulate mRNA abundance in trans, showed differential accumulation due to virus infection. tRNA fragments did not accumulate differentially after hypovirus infection. Hence, in-depth analysis showed that infection of S. sclerotiorum by a hypovirulence-inducing hypovirus produced selective, large-scale reprogramming of mRNA and sRNA production.


Assuntos
Ascomicetos/genética , Ascomicetos/virologia , Micovírus/fisiologia , Pequeno RNA não Traduzido/genética , Transcrição Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Micélio/genética , Micélio/virologia , Filogenia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA de Transferência/genética , Virulência
12.
Genes (Basel) ; 9(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061549

RESUMO

Nucleotide Binding Site-Leucine-Rich Repeat (NBS-LRR) genes encode disease resistance proteins involved in plants' defense against their pathogens. Although sunflower is affected by many diseases, only a few molecular details have been uncovered regarding pathogenesis and resistance mechanisms. Recent availability of sunflower whole genome sequences in publicly accessible databases allowed us to accomplish a genome-wide identification of Toll-interleukin-1 receptor-like Nucleotide-binding site Leucine-rich repeat (TNL), Coiled Coil (CC)-NBS-LRR (CNL), Resistance to powdery mildew 8 (RPW8)-NBS-LRR (RNL) and NBS-LRR (NL) protein encoding genes. Hidden Markov Model (HMM) profiling of 52,243 putative protein sequences from sunflower resulted in 352 NBS-encoding genes, among which 100 genes belong to CNL group including 64 genes with RX_CC like domain, 77 to TNL, 13 to RNL, and 162 belong to NL group. We also identified signal peptides and nuclear localization signals present in the identified genes and their homologs. We found that NBS genes were located on all chromosomes and formed 75 gene clusters, one-third of which were located on chromosome 13. Phylogenetic analyses between sunflower and Arabidopsis NBS genes revealed a clade-specific nesting pattern in CNLs, with RNLs nested in the CNL-A clade, and species-specific nesting pattern for TNLs. Surprisingly, we found a moderate bootstrap support (BS = 50%) for CNL-A clade being nested within TNL clade making both the CNL and TNL clades paraphyletic. Arabidopsis and sunflower showed 87 syntenic blocks with 1049 high synteny hits between chromosome 5 of Arabidopsis and chromosome 6 of sunflower. Expression data revealed functional divergence of the NBS genes with basal level tissue-specific expression. This study represents the first genome-wide identification of NBS genes in sunflower paving avenues for functional characterization and potential crop improvement.

13.
Viruses ; 10(4)2018 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-29690568

RESUMO

This study aimed to demonstrate the existence of antiviral RNA silencing mechanisms in Sclerotinia sclerotiorum by infecting wild-type and RNA-silencing-deficient strains of the fungus with an RNA virus and a DNA virus. Key silencing-related genes were disrupted to dissect the RNA silencing pathway. Specifically, dicer genes (dcl-1, dcl-2, and both dcl-1/dcl-2) were displaced by selective marker(s). Disruption mutants were then compared for changes in phenotype, virulence, and susceptibility to virus infections. Wild-type and mutant strains were transfected with a single-stranded RNA virus, SsHV2-L, and copies of a single-stranded DNA mycovirus, SsHADV-1, as a synthetic virus constructed in this study. Disruption of dcl-1 or dcl-2 resulted in no changes in phenotype compared to wild-type S. sclerotiorum; however, the double dicer mutant strain exhibited significantly slower growth. Furthermore, the Δdcl-1/dcl-2 double mutant, which was slow growing without virus infection, exhibited much more severe debilitation following virus infections including phenotypic changes such as slower growth, reduced pigmentation, and delayed sclerotial formation. These phenotypic changes were absent in the single mutants, Δdcl-1 and Δdcl-2. Complementation of a single dicer in the double disruption mutant reversed viral susceptibility to the wild-type state. Virus-derived small RNAs were accumulated from virus-infected wild-type strains with strand bias towards the negative sense. The findings of these studies indicate that S. sclerotiorum has robust RNA silencing mechanisms that process both DNA and RNA mycoviruses and that, when both dicers are silenced, invasive nucleic acids can greatly debilitate the virulence of this fungus.


Assuntos
Ascomicetos/virologia , Micovírus/genética , Micovírus/fisiologia , Interferência de RNA , Vírus de DNA/genética , Vírus de DNA/fisiologia , Técnicas de Inativação de Genes , Teste de Complementação Genética , Fenótipo , Vírus de RNA/genética , Vírus de RNA/fisiologia , Ribonuclease III/deficiência
14.
Plant Signal Behav ; 8(11): e27189, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24317362

RESUMO

Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that mediate various signaling pathways associated with biotic and abiotic stress responses in eukaryotes. The MAPK genes form a 3-tier signal transduction cascade between cellular stimuli and physiological responses. Recent identification of soybean MAPKs and availability of genome sequences from other legume species allowed us to identify their MAPK genes. The main objectives of this study were to identify MAPKs in 3 legume species, Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, and to assess their phylogenetic relationships. We used approaches in comparative genomics for MAPK gene identification and named the newly identified genes following Arabidopsis MAPK nomenclature model. We identified 19, 18, and 15 MAPKs and 7, 4, and 9 MAPKKs in the genome of Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, respectively. Within clade placement of MAPKs and MAPKKs in the 3 legume species were consistent with those in soybean and Arabidopsis. Among 5 clades of MAPKs, 4 founder clades were consistent to MAPKs of other plant species and orthologs of MAPK genes in the fifth clade-"Clade E" were consistent with those in soybean. Our results also indicated that some gene duplication events might have occurred prior to eudicot-monocot divergence. Highly diversified MAPKs in soybean relative to those in 3 other legume species are attributable to the polyploidization events in soybean. The identification of the MAPK genes in the legume species is important for the legume crop improvement; and evolutionary relationships and functional divergence of these gene members provide insights into plant genome evolution.


Assuntos
Evolução Molecular , Genes de Plantas , Lotus/genética , Medicago/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Phaseolus/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Funções Verossimilhança , Lotus/enzimologia , Medicago/enzimologia , Dados de Sequência Molecular , Phaseolus/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência do Ácido Nucleico
15.
Evol Bioinform Online ; 9: 363-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24137047

RESUMO

Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...