Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 17(11): e2006309, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33620772

RESUMO

Since the Ti3 C2 was discovered in 2011, the family of MXenes has attracted much attention. MXenes offer great potential in the tuning of many fundamental properties by the synthesis of new structures. The synthesis methods of MXene mainly require steps including immersing a MAX phase in hydrofluoric acid (HF) and processing at high temperatures. However, the HF may be hard to acquire in many countries and processing at high temperatures may cause risk issues. In this article, a simple and cost-effective synthesis of Ti3 C2 Tx quantum dots (QDs) via chemical solution method that follows the long-time magnetic stirring process-initiated etching of Al atoms from commercial Ti3 AlC2 powder at room temperature is introduced. With WS2 monolayer sitting over the MXenes QD arrays, a higher level of photoluminescence (PL) enhancement is found in the heterostructure with increasing laser power at room temperature and a few novel quasi-particles species in the heterostructure at -190 °C. The observations show that the possible plasmonic behavior initiated by QD arrays and the suspension state of WS2 may coplay the roles to trigger multiple quasi-particles species. This study can be an important benchmark for the extensive understanding of quasi-particles species, and their dynamics.

2.
Adv Sci (Weinh) ; 7(24): 2002697, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344136

RESUMO

2D materials possess wide-tuning properties ranging from semiconducting and metallization to superconducting, etc., which are determined by their structure, empowering them to be appealing in optoelectronic and photovoltaic applications. Pressure is an effective and clean tool that allows modifications of the electronic structure, crystal structure, morphologies, and compositions of 2D materials through van der Waals (vdW) interaction engineering. This enables an insightful understanding of the variable vdW interaction induced structural changes, structure-property relations as well as contributes to the versatile implications of 2D materials. Here, the recent progress of high-pressure research toward 2D materials and heterostructures, involving graphene, boron nitride, transition metal dichalcogenides, 2D perovskites, black phosphorene, MXene, and covalent-organic frameworks, using diamond anvil cell is summarized. A detailed analysis of pressurized structure, phonon dynamics, superconducting, metallization, doping together with optical property is performed. Further, the pressure-induced optimized properties and potential applications as well as the vision of engineering the vdW interactions in heterostructures are highlighted. Finally, conclusions and outlook are presented on the way forward.

3.
Nanoscale ; 12(44): 22366-22385, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33150899

RESUMO

Two-dimensional materials (2Dm) offer a unique insight into the world of quantum mechanics including van der Waals (vdWs) interactions, exciton dynamics and various other nanoscale phenomena. 2Dm are a growing family consisting of graphene, hexagonal-Boron Nitride (h-BN), transition metal dichalcogenides (TMDs), monochalcogenides (MNs), black phosphorus (BP), MXenes and 2D organic crystals such as small molecules (e.g., pentacene, C8 BTBT, perylene derivatives, etc.) and polymers (e.g., COF and MOF, etc.). They exhibit unique mechanical, electrical, optical and optoelectronic properties that are highly enhanced as the surface to volume ratio increases, resulting from the transition of bulk to the few- to mono- layer limit. Such unique attributes include the manifestation of highly tuneable bandgap semiconductors, reduced dielectric screening, highly enhanced many body interactions, the ability to withstand high strains, ferromagnetism, piezoelectric and flexoelectric effects. Using 2Dm for mechanical resonators has become a promising field in nanoelectromechanical systems (NEMS) for applications involving sensors and condensed matter physics investigations. 2Dm NEMS resonators react with their environment, exhibit highly nonlinear behaviour from tension induced stiffening effects and couple different physics domains. The small size and high stiffness of these devices possess the potential of highly enhanced force sensitivities for measuring a wide variety of un-investigated physical forces. This review highlights current research in 2Dm NEMS resonators from fundamental physics and an applications standpoint, as well as presenting future possibilities using these devices.

4.
ACS Nano ; 14(6): 7444-7453, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32401484

RESUMO

Organic-inorganic (O-I) heterostructures, consisting of atomically thin inorganic semiconductors and organic molecules, present synergistic and enhanced optoelectronic properties with a high tunability. Here, we develop a class of air-stable vertical O-I heterostructures comprising a monolayer of transition-metal dichalcogenides (TMDs), including WS2, WSe2, and MoSe2, on top of tetraphenylethylene (TPE) core-based aggregation-induced emission (AIE) molecular rotors. The created O-I heterostructures yields a photoluminescence (PL) enhancement of up to ∼950%, ∼500%, and ∼330% in the top monolayer WS2, MoSe2, and WSe2 as compared to PL in their pristine monolayers, respectively. The strong PL enhancement is mainly attributed to the efficient photogenerated carrier process in the AIE luminogens (courtesy of their restricted intermolecular motions in the solid state) and the charge-transfer process in the created type I O-I heterostructures. Moreover, we observe an improvement in photovoltaic properties of the TMDs in the heterostructures including the quasi-Fermi level splitting, minority carrier lifetime, and light absorption. This work presents an inspiring example of combining stable, highly luminescent AIE-based molecules, with rich photochemistry and versatile applications, with atomically thin inorganic semiconductors for multifunctional and efficient optoelectronic devices.

5.
Adv Mater ; 31(25): e1900522, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31062437

RESUMO

One of the most fundamental parameters of any photovoltaic material is its quasi-Fermi level splitting (∆µ) under illumination. This quantity represents the maximum open-circuit voltage (Voc ) that a solar cell fabricated from that material can achieve. Herein, a contactless, nondestructive method to quantify this parameter for atomically thin 2D transition metal dichalcogenides (TMDs) is reported. The technique is applied to quantify the upper limits of Voc that can possibly be achieved from monolayer WS2 , MoS2 , WSe2 , and MoSe2 -based solar cells, and they are compared with state-of-the-art perovskites. These results show that Voc values of ≈1.4, ≈1.12, ≈1.06, and ≈0.93 V can be potentially achieved from solar cells fabricated from WS2 , MoS2 , WSe2 , and MoSe2 monolayers at 1 Sun illumination, respectively. It is also observed that ∆µ is inhomogeneous across different regions of these monolayers. Moreover, it is attempted to engineer the observed ∆µ heterogeneity by electrically gating the TMD monolayers in a metal-oxide-semiconductor structure that effectively changes the doping level of the monolayers electrostatically and improves their ∆µ heterogeneity. The values of ∆µ determined from this work reveal the potential of atomically thin TMDs for high-voltage, ultralight, flexible, and eye-transparent future solar cells.

6.
Small ; 15(11): e1804733, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30714302

RESUMO

Mono- to few-layers of 2D semiconducting materials have uniquely inherent optical, electronic, and magnetic properties that make them ideal for probing fundamental scientific phenomena up to the 2D quantum limit and exploring their emerging technological applications. This Review focuses on the fundamental optoelectronic studies and potential applications of in-plane isotropic/anisotropic 2D semiconducting heterostructures. Strong light-matter interaction, reduced dimensionality, and dielectric screening in mono- to few-layers of 2D semiconducting materials result in strong many-body interactions, leading to the formation of robust quasiparticles such as excitons, trions, and biexcitons. An in-plane isotropic nature leads to the quasi-2D particles, whereas, an anisotropic nature leads to quasi-1D particles. Hence, in-plane isotropic/anisotropic 2D heterostructures lead to the formation of quasi-1D/2D particle systems allowing for the manipulation of high binding energy quasi-1D particle populations for use in a wide variety of applications. This Review emphasizes an exciting 1D-2D particles dynamic in such heterostructures and their potential for high-performance photoemitters and exciton-polariton lasers. Moreover, their scopes are also broadened in thermoelectricity, piezoelectricity, photostriction, energy storage, hydrogen evolution reactions, and chemical sensor fields. The unique in-plane isotropic/anisotropic 2D heterostructures may open the possibility of engineering smart devices in the nanodomain with complex opto-electromechanical functions.

7.
Nanoscale ; 11(2): 418-425, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30543239

RESUMO

The performance of optoelectronic devices based on monolayer transition-metal dichalcogenide (mTMD) semiconductors is significantly affected by the contact at the mTMD-metal interface, which is dependent on interlayer interactions and coupling. Here, we report a systematic optical method to investigate the interlayer charge transfer and coupling in a mTMD-metal heterojunction. Giant photoluminescence (PL) quenching was observed in a monolayer MoS2/Pd (1L MoS2/Pd) junction which is mainly due to the efficient interlayer charge transfer between Pd and MoS2. 1L MoS2/Pd also exhibits an increase in the PL quenching factor (η) as the temperature decreases, due to a reduction of the interlayer spacing. Annealing experiments were also performed which supported interlayer charge transfer as the main mechanism for the increase of η. Moreover, a monolayer MoS2/Au (1L MoS2/Au) junction was fabricated for engineering the interlayer charge transfer. Interestingly, a narrowing effect of the full width at half maximum (FWHM) was encountered as the junctions changed from 1L MoS2/SiO2 → 1L MoS2/Au → 1L MoS2/Pd, possibly originating from a change of the doping level induced weakening of exciton-carrier scattering. Our results deepen the understanding of metal-semiconductor junctions for further exploring fundamental phenomena and enabling high-performance devices using mTMD-metal junctions.

8.
Adv Mater ; 29(33)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671724

RESUMO

Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe2 /MoS2 hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA