Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 149: 105321, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275951

RESUMO

De novo synthesis of fatty acids is essential to maintain intensive proliferation of cancer cells. Unlike normal cells that utilize food-derived circulating lipids for their fuel, cancer cells rely on heightened lipogenesis irrespective of exogenous lipid availability. Overexpression and activity of the multidomain enzyme fatty acid synthase (FASN) is crucial in supplying palmitate for protumorigenic activity. Therefore, FASN has been proposed as an attractive target for drug development. As an effort to set up an effective toolkit to study FASN inhibitors in human and rodent tissues, we validated activity-based protein profiling (ABPP) as a viable approach to unveil inhibitors targeting FASN thioesterase domain (FASN-TE). ABPP was combined with multi-well plate-assays designed for classical substrate-based FASN activity analysis together with powerful monitoring of cancer cell proliferation using IncuCyte® Live Cell Analyzing System. FASN-TE inhibitors were identified by competitive ABPP using HEK293 cell lysates in a screen of in-house compounds (200+) designed to target serine hydrolase (SH) family. The identified compounds were tested for their inhibitor potencies in vitro using a substrate-based activity assay monitoring FASN-dependent NADPH consumption in LNCaP prostate cancer cell preparation, in parallel with selected reference inhibitors, including orlistat (THL), GSK2194069, GSK837149A, platensimycin and BI-99179. LNCaP lysate supernatant was validated as a reliable native preparation to monitor FASN-dependent NADPH consumption as opposed to human glioma GAMG cells, whereas FASN enrichment was a prerequisite for accurate assays. While inhibitor pharmacology was identical between human prostate and glioma cancer cell FASN preparations, notable differences were revealed between human and rodent FASN preparations, especially for inhibitors targeting FASN-TE. ABPP combined with substrate-based assays facilitated identification of pan thiol-reactive inhibitor scaffolds, exemplified by the 1,2,4-thiadiazole moiety. Finally, selected compounds were evaluated for their antiproliferative efficacy in situ using GAMG cells. These studies revealed that while the tested compounds acted as potent FASN inhibitors in vitro, only a few showed antiproliferative efficacy in situ. To conclude, we describe a versatile toolkit to study FASN inhibitors in vitro and in situ using human cancer cells and reveal dramatic pharmacological differences between human and rodent FASN preparations.

2.
Eur J Pharm Sci ; 107: 97-111, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28687529

RESUMO

Inhibition of Autotaxin (ATX) is a potential treatment strategy for several diseases, including tumors with elevated ATX-lysophosphatidic acid (LPA) signaling. Combining structure-based virtual screening together with hen egg-white Autotaxin (ewATX) activity assays enabled the discovery of novel small-molecule ATX inhibitors with a 2,4-dihydropyrano[2,3-c]pyrazole scaffold. These compounds are suggested to bind to the lipophilic pocket, leaving the active site unrestrained. Our most potent compound, (S)-6-amino-4-(3,4-dichlorophenyl)-3-(4-[(4-fluorobenzyl)oxy]phenyl)-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile [(S)-25], inhibited human ATX (hATX) with an IC50-value of 134nM. It also blocked ATX-evoked but not LPA-mediated A2058 melanoma cell migration. Noteworthy, molecular modeling correctly predicted the biologically active enantiomer of 2,4-dihydropyrano[2,3-c]pyrazoles, as verified by compound crystallization and activity assays. Our study established the ewATX activity assay as a valid and affordable tool in ATX inhibitor discovery. Overall, our study offers novel insights and approaches into design of novel ATX inhibitors targeting the hydrophobic pocket instead of the active site.


Assuntos
Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Galinhas , Colina/metabolismo , Simulação por Computador , Desenho de Fármacos , Clara de Ovo/química , Feminino , Humanos , Hidrólise , Modelos Moleculares
3.
Eur J Pharm Sci ; 93: 253-63, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27544863

RESUMO

ABHD11 (α/ß-hydrolase domain containing 11) is a non-annotated enzyme belonging to the family of metabolic serine hydrolases (mSHs). Its natural substrates and products are unknown. Using competitive activity-based protein profiling (ABPP) to identify novel inhibitors of human (h)ABHD11, three compounds from our chemical library exhibited low nanomolar potency towards hABHD11. Competitive ABPP of various proteomes revealed fatty acid amide hydrolase (FAAH) as the sole off-target among the mSHs. Our fluorescent activity assays designed for natural lipase substrates revealed no activity of hABHD11 towards mono- or diacylglycerols. A broader profiling using para-nitrophenyl (pNP)-linked substrates indicated no amidase/protease, phosphatase, sulfatase, phospholipase C or phosphodiesterase activity. Instead, hABHD11 readily utilized para-nitrophenyl butyrate (pNPC4), indicating lipase/esterase-type activity that could be exploited in inhibitor discovery. Additionally, a homology model was created based on the crystal structure of bacterial esterase YbfF. In contrast to YbfF, which reportedly hydrolyze long-chain acyl-CoA, hABHD11 did not utilize oleoyl-CoA or arachidonoyl-CoA. In conclusion, the present study reports the discovery of potent hABHD11 inhibitors with good selectivity among mSHs. We developed substrate-based activity assays for hABHD11 that could be further exploited in inhibitor discovery and created the first homology-based hABHD11 model, offering initial insights into the active site of this poorly characterized enzyme.


Assuntos
Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Arilformamidase/genética , Encéfalo/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Moleculares , Proteômica , Serina Proteases/química , Serina Proteases/genética , Tioléster Hidrolases/genética
4.
Eur J Med Chem ; 107: 119-32, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26575458

RESUMO

To date, many known G protein-coupled receptor 55 (GPR55) ligands are those identified among the cannabinoids. In order to further study the function of GPR55, new potent and selective ligands are needed. In this study, we utilized the screening results from PubChem bioassay AID 1961 which reports the results of Image-based HTS for Selective Agonists of GPR55. Three compounds, CID1792579, CID1252842 and CID1011163, were further evaluated and used as a starting point to create a series of nanomolar potency GPR55 agonists with N-(4-sulfamoylphenyl)thiourea scaffold. The GPR55 activity of the compounds were screened by using a commercial ß-arrestin PathHunter assay and the potential compounds were further evaluated by using a recombinant HEK cell line exhibiting GPR55-mediated effects on calcium signalling. The designed compounds were not active when tested against various endocannabinoid targets (CB1R, CB2R, FAAH, MGL, ABHD6 and ABHD12), indicating compounds' selectivity for the GPR55. Finally, structure-activity relationships of these compounds were explored.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Relação Estrutura-Atividade , Tioureia/química , Linhagem Celular , Técnicas de Química Sintética , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Humanos , Ligantes , Modelos Moleculares , Monoacilglicerol Lipases/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
5.
Xenobiotica ; 46(1): 14-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26068522

RESUMO

1. Information about the metabolism of compounds is essential in drug discovery and development, risk assessment of chemicals and further development of predictive methods. 2. In vitro and in silico methods were applied to evaluate the metabolic and inhibitory properties of 6-methylcoumarin, 7-methylcoumarin and 7-formylcoumarin with human CYP2A6, mouse CYP2A5 and pig CYP2A19. 3. 6-Methylcoumarin was oxidized to fluorescent 7-hydroxy-6-methylcoumarin by CYP2A6 (Km: 0.64-0.91 µM; Vmax: 0.81-0.89 min(-1)) and by CYP2A5 and CYP2A19. The reaction was almost completely inhibited at 10 µM 7-methylcoumarin in liver microsomes of human and mouse, but in pig only 40% inhibition was obtained with the anti-CYP2A5 antibody or with methoxsalen and pilocarpine. 7-Methylcoumarin was a mechanism-based inhibitor for CYP2A6, but not for the mouse and pig enzymes. 7-Formylcoumarin was a mechanism-based inhibitor for CYP2As of all species. 4. Docking and molecular dynamics simulations of 6-methylcoumarin and 7-methylcoumarin in the active sites of CYP2A6 and CYP2A5 demonstrated a favorable orientation of the 7-position of 6-methylcoumarin towards the heme moiety. Several orientations of 7-methylcoumarin were possible in CYP2A6 and CYP2A5. 5. These results indicate that the active site of CYP2A6 has unique interaction properties for ligands and differs in this respect from CYP2A5 and CYP2A19.


Assuntos
Cumarínicos/farmacologia , Citocromo P-450 CYP2A6/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Animais , Citocromo P-450 CYP2A6/metabolismo , Humanos , Hidroxilação , Concentração Inibidora 50 , Cinética , Camundongos , Modelos Moleculares , Oxirredução , Sus scrofa , Fatores de Tempo
6.
Bioorg Med Chem ; 23(19): 6335-45, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26344596

RESUMO

This article describes our systematic approach to exploring the utility of the 1,3,4-oxadiazol-2-one scaffold in the development of ABHD6 inhibitors. Compound 3-(3-aminobenzyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (JZP-169, 52) was identified as a potent inhibitor of hABHD6, with an IC50 value of 216 nM. This compound at 10 µM concentration did not inhibit any other endocannabinoid hydrolases, such as FAAH, MAGL and ABHD12, or bind to the cannabinoid receptors (CB1 and CB2). Moreover, in competitive activity-based protein profiling (ABPP), compound 52 (JZP-169) at 10 µM selectively targeted ABHD6 of the serine hydrolases of mouse brain membrane proteome. Reversibility studies indicated that compound 52 inhibited hABHD6 in an irreversible manner. Finally, homology modelling and molecular docking studies were used to gain insights into the binding of compound 52 to the active site of hABHD6.


Assuntos
Inibidores Enzimáticos/química , Monoacilglicerol Lipases/antagonistas & inibidores , Oxidiazóis/química , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/metabolismo , Oxidiazóis/metabolismo , Ligação Proteica , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Serina Proteases/química , Serina Proteases/metabolismo , Relação Estrutura-Atividade
7.
J Mol Model ; 21(10): 250, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26350245

RESUMO

The endocannabinoid system remains an attractive molecular target for pharmacological intervention due to its roles in the central nervous system in learning, thinking, emotional function, regulation of food intake or pain sensation, as well as in the peripheral nervous system, where it modulates the action of cardiovascular, immune, metabolic or reproductive function. α/ß hydrolase domain containing 6 (ABHD6)--an enzyme forming part of the endocannabinoid system--is a newly discovered post-genomic protein acting as a 2-AG (2-arachidonoylglycerol) serine hydrolase. We have recently reported a series of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors. Here, we present comparative molecular field analysis (CoMFA) and molecular dynamics studies of these compounds. First, we performed a homology modeling study of ABHD6 based on the assumption that the catalytic triad of ABHD6 comprises Ser148-His306-Asp 278 and the oxyanion hole is formed by Met149 and Phe80. A total of 42 compounds was docked to the homology model using the Glide module from the Schrödinger suite of software and the selected docking poses were used for CoMFA alignment. A model with the following statistics was obtained: R(2) = 0.98, Q(2) = 0.55. In order to study the molecular interactions of the inhibitors with ABHD6 in detail, molecular dynamics was performed with the Desmond program. It was found that, during the simulations, the hydrogen bond between the inhibitor carbonyl group and the main chain of Phe80 is weakened, whereas a new hydrogen bond with the side chain of Ser148 is formed, facilitating the possible formation of a covalent bond. Graphical Abstract Left-right: Docking pose of 1 in the binding pocket of α/ß hydrolase domain containing 6 (ABHD6) selected for molecular alignment; CoMFA steric and electrostatic contour fields; changes in potential energy of the complex during simulations for the complex of 6 and ABHD6.


Assuntos
Inibidores Enzimáticos/química , Simulação de Dinâmica Molecular , Monoacilglicerol Lipases/química , Inibidores Enzimáticos/farmacologia , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoacilglicerol Lipases/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
8.
Bioorg Med Chem Lett ; 25(7): 1436-42, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25752982

RESUMO

Compound 12a (JZP-361) acted as a potent and reversible inhibitor of human recombinant MAGL (hMAGL, IC50=46 nM), and was found to have almost 150-fold higher selectivity over human recombinant fatty acid amide hydrolase (hFAAH, IC50=7.24 µM) and 35-fold higher selectivity over human α/ß-hydrolase-6 (hABHD6, IC50=1.79 µM). Additionally, compound 12a retained H1 antagonistic affinity (pA2=6.81) but did not show cannabinoid receptor activity, when tested at concentrations ⩽ 10 µM. Hence, compound 12a represents a novel dual-acting pharmacological tool possessing both MAGL-inhibitory and antihistaminergic activities.


Assuntos
Inibidores Enzimáticos/farmacologia , Loratadina/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Loratadina/síntese química , Loratadina/química , Modelos Moleculares , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
9.
Eur J Pharm Sci ; 67: 85-96, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25447744

RESUMO

The cannabinoid receptors type 2 (CBR2) are attractive therapeutic targets of the endocannabinoid signaling system (ECS) as they are not displaying the undesired psychotropic and cardiovascular side-effects seen with cannabinoid receptor type 1 (CB1R) agonists. In continuation of our previous work on 2,4,6-trisubstituted 1,3,5-triazines as potent CB2 agonists, we synthesized an additional series of more polar analogues (1-10), which were found to possess high CB2R agonist activity with enhanced water solubility. The most potent compound in the series was N-(adamantan-1-yl)-4-ethoxy-6-(4-(2-fluoroethyl)piperazin-1-yl)-1,3,5-triazin-2-amine (9) with EC50 value of 0.60nM. To further evaluate the biological effects of the compounds, the selected compounds were tested in vitro against four different cell lines. A human retinal pigment epithelial cell line (ARPE-19) was used to evaluate the cytotoxicity of the compounds whereas an androgen-sensitive human prostate adenocarcinoma cell line (LNCaP), a Jurkat leukemia cell line and a C8161 melanoma cell line were used to assess the antiproliferative activity of the compounds. The most interesting results were obtained for N-(adamantan-1-yl)-4-ethoxy-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (6), which induced cell viability decrease in prostate and leukemia cell lines, and diminished proliferation of C8161 melanoma cells. The results could be reversed in leukemia cells with the selective CB2R antagonist AM630, whereas in prostate cells the AM630 induced a significant cell viability decrease with a mechanism probably unlinked to CB2 cannabinoid receptor. The antiproliferative effect of 6 on the melanoma cells seemed not to be mediated via the CB1R or CB2R. No cytotoxicity was detected against ARPE-19 cell line at concentrations of 1 and 10µM for compound 6. However, at 30µM concentration the compound 6 decreased the cell viability. Finally, in order to estimate in vivo behavior of these compounds, (18)F labeled PET ligand, N-cyclopentyl-4-ethoxy-6-(4-(2-fluoro-18-ethyl)piperazin-1-yl)-1,3,5-triazin-2-amine ([(18)F]5), was synthesized and its biodistribution was determined in healthy male Sprague-Dawley rats. As a result, the tracer showed a rapid (<15min) elimination in urine accompanied by a slower excretion via the hepatobiliary route. In conclusion, we further demonstrated that 1,3,5-triazine scaffold serves as a suitable template for the design of highly potent CB2R agonists with reasonable water solubility properties. The compounds may be useful when studying the role of the endocannabinoid system in different diseases. The triazine scaffold is also a promising candidate for the development of new CB2R PET ligands.


Assuntos
Antineoplásicos , Agonistas de Receptores de Canabinoides , Receptor CB2 de Canabinoide/agonistas , Triazinas , 1-Octanol/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacocinética , Agonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Radioisótopos de Flúor , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Masculino , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Solubilidade , Distribuição Tecidual , Triazinas/síntese química , Triazinas/química , Triazinas/farmacocinética , Triazinas/farmacologia , Água/química
10.
ChemMedChem ; 10(2): 253-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25504894

RESUMO

At present, inhibitors of α/ß-hydrolase domain 6 (ABHD6) are viewed as a promising approach to treat inflammation and metabolic disorders. This article describes the development of 1,2,5-thiadiazole carbamates as ABHD6 inhibitors. Altogether, 34 compounds were synthesized, and their inhibitory activity was tested using lysates of HEK293 cells transiently expressing human ABHD6 (hABHD6). Among the compound series, 4-morpholino-1,2,5-thiadiazol-3-yl cyclooctyl(methyl)carbamate (JZP-430) potently and irreversibly inhibited hABHD6 (IC50 =44 nM) and showed ∼230-fold selectivity over fatty acid amide hydrolase (FAAH) and lysosomal acid lipase (LAL), the main off-targets of related compounds. Additionally, activity-based protein profiling indicated that JZP-430 displays good selectivity among the serine hydrolases of the mouse brain membrane proteome. JZP-430 has been identified as a highly selective, irreversible inhibitor of hABHD6, which may provide a novel approach in the treatment of obesity and type II diabetes.


Assuntos
Carbamatos/química , Inibidores Enzimáticos/química , Monoacilglicerol Lipases/antagonistas & inibidores , Tiadiazóis/química , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Sítios de Ligação , Encéfalo/metabolismo , Carbamatos/síntese química , Carbamatos/metabolismo , Domínio Catalítico , Membrana Celular/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Cinética , Lipase/antagonistas & inibidores , Lipase/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/metabolismo
11.
Bioorg Med Chem ; 22(23): 6694-6705, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25282655

RESUMO

The key hydrolytic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are potential targets for various therapeutic applications. In this paper, we present more extensively the results of our previous work on piperazine and piperidine carboxamides and carbamates as FAAH and MAGL inhibitors. The best compounds of these series function as potent and selective MAGL/FAAH inhibitors or as dual FAAH/MAGL inhibitors at nanomolar concentrations. This study revealed that MAGL inhibitors should comprise leaving-groups with a conjugate acid pKa of 8-10, while diverse leaving groups are tolerated for FAAH inhibitors.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Amidas/farmacologia , Amidoidrolases/metabolismo , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Piperazina , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacologia , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia , Relação Estrutura-Atividade
12.
Biochem Pharmacol ; 68(11): 2273-81, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15498517

RESUMO

The glucuronide prodrug of doxorubicin, DOX-GA3, can be selectively activated in tumors by extracellular human beta-glucuronidase, resulting in a better therapeutic index than doxorubicin. DOX-GA3, however, is rapidly excreted by the kidney. We hypothesized that slow release of DOX-GA3 from its methylester, DOX-mGA3, by esterase activity in blood would result in improved circulation half-life (t(1/2)) of DOX-GA3. DOX-mGA3 was synthesized more efficiently with an overall yield of 60% as compared to 37% in the case of DOX-GA3. We showed that DOX-mGA3 was enzymatically converted to DOX-GA3 with a t(1/2) of approximately 0.5 min in mouse plasma to 2.5 h in human plasma, which was in agreement with differences in esterase activity between species. DOX-mGA3, similar to DOX-GA3, was at least 37-fold less potent than the parent drug doxorubicin in growth inhibition of four different human malignant cell lines in vitro. Incubation of OVCAR-3 cells with DOX-mGA3 in combination with an excess of human beta-glucuronidase (0.05 U mL(-1)) resulted in a similar growth inhibition to that of doxorubicin. Intravenous administration of DOX-mGA3 in FMa-bearing mice resulted in an area under the concentration versus time curve (AUC) of DOX-GA3 in tumor and most normal tissues that was 2.5- to 3-fold higher than after the same dose of DOX-GA3 itself. In tumor tissue, this was accompanied by a 2.7-fold increase in the AUC of doxorubicin from DOX-mGA3 than from DOX-GA3. In conclusion, an advantage of DOX-mGA3 over DOX-GA3 is that this prodrug can be produced with a higher yield. Another important advantage is the improved pharmacokinetics of the lipophilic DOX-mGA3 as compared to that of the hydrophilic DOX-GA3. This effect may even be more pronounced in man, because of the lower plasma esterase activity than measured in mice.


Assuntos
Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Glucuronatos/farmacocinética , Neoplasias Experimentais/metabolismo , Pró-Fármacos/metabolismo , Animais , Modelos Animais de Doenças , Ésteres/química , Feminino , Glucuronídeos/química , Humanos , Camundongos , Transplante de Neoplasias , Pró-Fármacos/farmacocinética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Bioorg Med Chem ; 10(1): 71-7, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11738608

RESUMO

The syntheses and preliminary evaluation of the first potential bioreductive paclitaxel prodrugs are described. These prodrugs were designed as potential candidates in more selective chemotherapy by targeting hypoxic tumour tissue. Aromatic nitro and azide groups were used as the bioreductive trigger. Generation of paclitaxel occurs after reduction and subsequent 1,6-elimination or 1,8-elimination. All prodrugs are stable in buffer and indeed give paclitaxel after chemical reduction of the aromatic nitro or azide functionality. In aerobic cytotoxicity assays several prodrugs exhibit diminished cytotoxicity. These compounds are interesting candidates for further biological evaluation.


Assuntos
Antineoplásicos/química , Paclitaxel/química , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Divisão Celular/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Oxirredução , Pró-Fármacos/farmacologia , Análise Espectral , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...