Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 24(6): 906-916, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35681008

RESUMO

Lysosomes are key cellular organelles that metabolize extra- and intracellular substrates. Alterations in lysosomal metabolism are implicated in ageing-associated metabolic and neurodegenerative diseases. However, how lysosomal metabolism actively coordinates the metabolic and nervous systems to regulate ageing remains unclear. Here we report a fat-to-neuron lipid signalling pathway induced by lysosomal metabolism and its longevity-promoting role in Caenorhabditis elegans. We discovered that induced lysosomal lipolysis in peripheral fat storage tissue upregulates the neuropeptide signalling pathway in the nervous system to promote longevity. This cell-non-autonomous regulation is mediated by a specific polyunsaturated fatty acid, dihomo-γ-linolenic acid, and LBP-3 lipid chaperone protein transported from the fat storage tissue to neurons. LBP-3 binds to dihomo-γ-linolenic acid, and acts through NHR-49 nuclear receptor and NLP-11 neuropeptide in neurons to extend lifespan. These results reveal lysosomes as a signalling hub to coordinate metabolism and ageing, and lysosomal signalling mediated inter-tissue communication in promoting longevity.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Lisossomos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo
2.
G3 (Bethesda) ; 10(1): 189-198, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31712257

RESUMO

The relationship of genotypes to phenotypes can be modified by environmental inputs. Such crucial environmental inputs include metabolic cues derived from microbes living together with animals. Thus, the analysis of genetic effects on animals' physiology can be confounded by variations in the metabolic profile of microbes. Caenorhabditis elegans exposed to distinct bacterial strains and species exhibit phenotypes different at cellular, developmental, and behavioral levels. Here we reported metabolomic profiles of three Escherichia coli strains, B strain OP50, K-12 strain MG1655, and B-K-12 hybrid strain HB101, as well as different mitochondrial and fat storage phenotypes of C. elegans exposed to MG1655 and HB101 vs. OP50. We found that these metabolic phenotypes of C. elegans are not correlated with overall metabolic patterning of bacterial strains, but their specific metabolites. In particular, the fat storage phenotype is traced to the betaine level in different bacterial strains. HT115 is another K-12 E. coli strain that is commonly utilized to elicit an RNA interference response, and we showed that C. elegans exposed to OP50 and HT115 exhibit differences in mitochondrial morphology and fat storage levels. We thus generated an RNA interference competent OP50 (iOP50) strain that can robustly and consistently knockdown endogenous C. elegans genes in different tissues. Together, these studies suggest the importance of specific bacterial metabolites in regulating the host's physiology and provide a tool to prevent confounding effects when analyzing genotype-phenotype interactions under different bacterial backgrounds.


Assuntos
Interações Hospedeiro-Patógeno , Metaboloma , Interferência de RNA , Animais , Caenorhabditis elegans , Escherichia coli , Mitocôndrias/metabolismo , Fenótipo
4.
Genes Dev ; 32(3-4): 197-198, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29491133

RESUMO

Aging is fundamental to life and reflects functional declines in different tissues at the organismal level. As a systematic process, aging can be influenced by the interplay between genetic and environmental factors, and the nervous system plays a crucial role in this regulation. Environmental inputs can be sensed by the nervous system, which consequently triggers signaling outputs toward peripheral tissues to regulate gene expression systematically. Thus, understanding the underlying molecular mechanisms behind environmentally triggered neuron-periphery cross-talk is crucial for the promotion of an organism's health and longevity.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Encéfalo , Longevidade , Neurônios
5.
Cell ; 169(7): 1249-1262.e13, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622510

RESUMO

Homeostasis of the gut microbiota critically influences host health and aging. Developing genetically engineered probiotics holds great promise as a new therapeutic paradigm to promote healthy aging. Here, through screening 3,983 Escherichia coli mutants, we discovered that 29 bacterial genes, when deleted, increase longevity in the host Caenorhabditis elegans. A dozen of these bacterial mutants also protect the host from age-related progression of tumor growth and amyloid-beta accumulation. Mechanistically, we discovered that five bacterial mutants promote longevity through increased secretion of the polysaccharide colanic acid (CA), which regulates mitochondrial dynamics and unfolded protein response (UPRmt) in the host. Purified CA polymers are sufficient to promote longevity via ATFS-1, the host UPRmt-responsive transcription factor. Furthermore, the mitochondrial changes and longevity effects induced by CA are conserved across different species. Together, our results identified molecular targets for developing pro-longevity microbes and a bacterial metabolite acting on host mitochondria to promote longevity.


Assuntos
Caenorhabditis elegans/microbiologia , Escherichia coli/genética , Longevidade , Envelhecimento/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Carga Bacteriana , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Escherichia coli/metabolismo , Deleção de Genes , Estudo de Associação Genômica Ampla , Dinâmica Mitocondrial , Modelos Animais , Polissacarídeos/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...