Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 99(5): 1055-1068.e6, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30122373

RESUMO

Diffuse projections of locus coeruleus (LC) neurons and evidence of synchronous spiking have long been perceived as features of global neuromodulation. Recent studies demonstrated the possibility of targeted modulation by subsets of LC neurons. Non-global neuromodulation depends on target specificity and the differentiated spatiotemporal dynamics within LC. Here, we characterized interactions between 3,164 LC cell pairs in the rat LC under urethane anesthesia. Spike count correlations were near zero and only a small proportion of unit pairs had synchronized spontaneous (15%) or evoked (16%) discharge. We identified infra-slow (0.01-1 Hz) fluctuations of LC unit spike rate, which were also asynchronous across the population. Despite overall sparse population synchrony, we report the existence of LC ensembles and relate them to forebrain projection targets. We also show that spike waveform width was related to ensemble membership, propensity for synchronization, and interactions with cortex. Our findings suggest a partly differentiated and target-specific noradrenergic signal.


Assuntos
Potenciais de Ação/fisiologia , Locus Cerúleo/citologia , Locus Cerúleo/fisiologia , Neurônios/fisiologia , Animais , Diferenciação Celular/fisiologia , Estimulação Elétrica/métodos , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
2.
J Neurophysiol ; 119(3): 904-920, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093170

RESUMO

The locus coeruleus (LC) noradrenergic (NE) neuromodulatory system is critically involved in regulation of neural excitability via its diffuse ascending projections. Tonic NE release in the forebrain is essential for maintenance of vigilant states and increases the signal-to-noise ratio of cortical sensory responses. The impact of phasic NE release on cortical activity and sensory processing is less explored. We previously reported that LC microstimulation caused a transient desynchronization of population activity in the medial prefrontal cortex (mPFC), similar to noxious somatosensory stimuli. The LC receives nociceptive information from the medulla and therefore may mediate sensory signaling to its forebrain targets. Here we performed extracellular recordings in LC and mPFC while presenting noxious stimuli in urethane-anesthetized rats. A brief train of foot shocks produced a robust phasic response in the LC and a transient change in the mPFC power spectrum, with the strongest modulation in the gamma (30-90 Hz) range. The LC phasic response preceded prefrontal gamma power increase, and cortical modulation was proportional to the LC excitation. We also quantitatively characterized distinct cortical states and showed that sensory responses in both LC and mPFC depend on the ongoing cortical state. Finally, cessation of the LC firing by bilateral local iontophoretic injection of clonidine, an α2-adrenoreceptor agonist, completely eliminated sensory responses in the mPFC without shifting cortex to a less excitable state. Together, our results suggest that the LC phasic response induces gamma power increase in the PFC and is essential for mediating sensory information along an ascending noxious pathway. NEW & NOTEWORTHY Our study shows linear relationships between locus coeruleus phasic excitation and the amplitude of gamma oscillations in the prefrontal cortex. Results suggest that the locus coeruleus phasic response is essential for mediating sensory information along an ascending noxious pathway.


Assuntos
Ritmo Gama , Locus Cerúleo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Eletrochoque , Masculino , Nociceptividade/fisiologia , Ratos Sprague-Dawley
3.
J Neurophysiol ; 111(12): 2570-88, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24671530

RESUMO

The brain stem nucleus locus coeruleus (LC) is thought to modulate cortical excitability by norepinephrine (NE) release in LC forebrain targets. The effects of LC burst discharge, typically evoked by a strong excitatory input, on cortical ongoing activity are poorly understood. To address this question, we combined direct electrical stimulation of LC (LC-DES) with extracellular recording in LC and medial prefrontal cortex (mPFC), an important cortical target of LC. LC-DES consisting of single pulses (0.1-0.5 ms, 0.01-0.05 mA) or pulse trains (20-50 Hz, 50-200 ms) evoked short-latency excitatory and inhibitory LC responses bilaterally as well as a delayed rebound excitation occurring ∼100 ms after stimulation offset. The pulse trains, but not single pulses, reliably elicited mPFC activity change, which was proportional to the stimulation strength. The firing rate of ∼50% of mPFC units was significantly modulated by the strongest LC-DES. Responses of mPFC putative pyramidal neurons included fast (∼100 ms), transient (∼100-200 ms) inhibition (10% of units) or excitation (13%) and delayed (∼500 ms), sustained (∼1 s) excitation (26%). The sustained spiking resembled NE-dependent mPFC activity during the delay period of working memory tasks. Concurrently, the low-frequency (0.1-8 Hz) power of the local field potential (LFP) decreased and high-frequency (>20 Hz) power increased. Overall, the DES-induced LC firing pattern resembled the naturalistic biphasic response of LC-NE neurons to alerting stimuli and was associated with a shift in cortical state that may optimize processing of behaviorally relevant events.


Assuntos
Lateralidade Funcional/fisiologia , Locus Cerúleo/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo , Córtex Pré-Frontal/fisiologia , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica/métodos , Masculino , Microeletrodos , Células Piramidais/fisiologia , Ratos Sprague-Dawley
4.
Neuroimage ; 59(4): 3252-65, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22119646

RESUMO

We examined the applicability of manganese-enhanced MRI (MEMRI) to the in vivo tracing of diffuse neuromodulatory projections by means of simultaneous iontophoretic injections of an extremely low, non-toxic concentration of MnCl(2) (10mM) and fluorescent dextran in the locus coeruleus (LC) in the rat. We validated the use of the iontophoretic injection by reproducing previously reported results from pressure injections of MnCl(2) in primary somatosensory cortex. Twenty fourhours after injection in LC, Mn(2+) labeling was detected in major cortical and subcortical targets of LC projections including predominantly ipsilateral primary motor and somatosensory cortices, hippocampus and amygdala. Although the injections were in most cases centered in the core of LC, the pattern of Mn(2+) labeling greatly varied across rats. In addition, despite a certain degree of overlap of the labeling obtained with both MEMRI and classical tracing, MEMRI tracing consistently failed to reliably label not only several minor but also major targets of LC, notably the thalamus. The lack of Mn(2+) labeling in thalamus possibly reflected a weaker functional connectivity within coeruleothalamic projections that could not be predicted by anatomical tracing. Inversely, a number of brain regions, particularly contralateral motor cortex, that were not or only sparsely labeled with fluorescent dextran were strongly labeled by Mn(2+). This discrepancy could be partly due to both the activity-dependent and transsynaptic nature of Mn(2+) transport. The overall labeling produced using MEMRI with iontophoretic injections in LC indicates that the Mn(2+) imaging of highly diffuse projections is in principle feasible. However, the labeling pattern of each individual case needs to be carefully interpreted particularly before submitting data for group analysis or in the case of longitudinal examination of discrete changes in functional connectivity under various physiological or behavioral conditions.


Assuntos
Neurônios Adrenérgicos , Mapeamento Encefálico/métodos , Córtex Cerebral/anatomia & histologia , Cloretos , Locus Cerúleo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês , Animais , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...