Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci (Basel) ; 6(1)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518019

RESUMO

Malignancy of cancer has been linked to distinct subsets of stem-like cells, the so-called cancer stem cells (CSCs), which persist during treatment and seem to lead to drug-resistant recurrence. Metastatic spread of cancer cells is one of the hallmarks of malignancy and contributes to most human melanoma-related deaths. Recently, overlapping groups of proteins and pathways were shown to regulate stem cell migration and cancer metastasis, raising the question of whether genes/proteins involved in stem cell pluripotency may have important implications when applied to the biology of cancer metastasis. Furthermore, it is well known that ion channels and receptors, particularly those responsible for calcium (Ca2+) signal generation, are critical in determining the cellular fate of stem cells (SCs). In the present study, we searched for evidence of altered stem cell pluripotency and Ca2+ signaling-related genes in the context of melanoma metastasis. We did this by using network analysis of gene expression in tissue biopsies from three different independent datasets of patients. First, we created an in silico network model ("STEMCa" interactome) showing the landscape of interactions between stem cell pluripotency and Ca2+ signaling-related genes/proteins, and demonstrated that around 51% (151 out of 294) of the genes within this model displayed significant changes of expression (False Discovery Rate (FDR), corrected p-value < 0.05) in at least one of the datasets of melanoma metastasis when compared with primary tumor biopsies (controls). Analysis of the properties (degree and betweenness) of the topological network revealed 27 members as the most central hub (HB) and nonhub-bottlenecks (NH-B) among the 294 genes/proteins of the whole interactome. From those representative genes, CTNNB1, GNAQ, GSK3B, GSTP1, MAPK3, PPP1CC, PRKACA, and SMAD4 showed equal up- or downregulation (corrected p-value < 0.05) in at least 2 independent datasets of melanoma metastases samples and PTPN11 showed upregulation (corrected p-value < 0.05) in three of them when compared with control samples. We postulate that altered expression of stem cell pluripotency and Ca2+ signaling pathway-related genes may contribute to the metastatic transformation, with these central members being an optimal candidate group of biomarkers and in silico therapeutic targets for melanoma metastasis, which deserve further investigation.

2.
J Periodontol ; 87(2): 193-202, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26430925

RESUMO

BACKGROUND: A deeper understanding of periodontitis pathophysiology is central to future development of novel biomarkers and therapeutics. The following is reported here: 1) an in silico network model of interactions among cell adhesion molecules and a network-focused microarray analysis of the corresponding genes in periodontitis; 2) analysis of secretions of adhesion molecules in gingival tissue samples from patients with periodontitis and healthy controls; and 3) effect of the human neutrophilic peptide-1 (HNP-1) on epithelial adhesion molecules. METHODS: The network model identified 85 nodes in relation to the interactions of adhesion molecules. Subsequently, the relative gene expression was overlaid on the network model. Differential gene expression was analyzed, and false discovery rate control was performed for statistical assessment of the microarray data. Both tissue and cell culture samples were immunostained for desmocollin (DSC)2, occludin (OCLN), desmoglein (DSG)1, tight junction protein 2, and gap junction protein α. RESULTS: The differential gene expression analysis revealed that the epithelial adhesion molecules were significantly lower in abundance in individuals with periodontitis than controls. In contrast, the genes for leukocyte adhesion molecules showed a significant upregulation. Immunostainings revealed elevated secretions of both DSG1 and OCLN in periodontitis. An in vitro model suggested reduced DSC2 and OCLN secretions in the presence of HNP-1. CONCLUSIONS: Gene expression of gingival adhesion molecules in periodontitis is regulated by leukocyte transmigration, whereas the neutrophilic antimicrobial peptide HNP-1 is noted as a putative regulator of epithelial adhesion molecules. These observations contribute to the key mechanisms by which future biomarkers might be developed for periodontitis.


Assuntos
Gengiva , Periodontite , Moléculas de Adesão Celular , Humanos , Leucócitos , Ocludina
3.
Artigo em Inglês | MEDLINE | ID: mdl-26793622

RESUMO

Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well.


Assuntos
Apoptose , Biomarcadores/análise , Redes Reguladoras de Genes , Periodontite/diagnóstico , Saliva/química , Biologia Computacional , Humanos , Metaloproteinases da Matriz/metabolismo , Redes e Vias Metabólicas , Óxido Nítrico/metabolismo , Oxirredução , Periodontite/patologia , Mapas de Interação de Proteínas , Proto-Oncogene Mas , Transdução de Sinais , Biologia de Sistemas
4.
Chem Biodivers ; 10(4): 507-23, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23576339

RESUMO

Satureja hortensis L. is an aromatic plant with antibacterial and antibiofilm activities against periodontopathogens. Here, we attempted to find out whether the antioxidant properties of S. hortensis L. essential oil (EO) could be used to inhibit matrix metalloproteinase (MMP) activities and prevent the induction of cell death by a pro-oxidant insult. First, a landscape analysis of MMP and REDOX/nitric oxide (NO)-related genes was performed (MRN model), and array data from periodontitis patients were plotted over the newly developed model. Thereafter, the antigelatinolytic activity of S. hortensis L. EO and its preventive effect against hydrogen peroxide (H2 O2 )-induced cell death were tested in vitro (HaCaT cells). Up-regulation of MMP genes in the MRN network (except for MMP-10, -15, -16, -20, -25, and -26) and differential expression of genes coding for antioxidant enzymes were found among others in periodontitis samples. MMP2 and MMP9 were central genes in the MRN network model. Moreover, treatments with 1 and 5 µl/ml of S. hortensis L. EO inhibited both MMP-2 and MMP-9 activities, and H2 O2 -induced cell death in vitro. We concluded that S. hortensis L. EO could be a promising host-modulating agent, since oxidative stress and excessive MMP expression/activity are typical hallmarks of periodontal pathogenesis.


Assuntos
Antioxidantes/química , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz/química , Óxido Nítrico/metabolismo , Óleos Voláteis/química , Periodontite/metabolismo , Satureja/química , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular , Redes Reguladoras de Genes , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Óleos Voláteis/farmacologia , Oxirredução , Periodontite/tratamento farmacológico , Periodontite/patologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...