Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(22): 26180-26193, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35635507

RESUMO

Electroactive materials allow the modulation of cell-materials interactions and cell fate, leading to advanced tissue regeneration strategies. Nevertheless, their effect at the cellular level is still poorly understood. In this context, the proteome analysis of C2C12 cell differentiation cultured on piezoelectric polymer films with null average surface charge (non-poled), net positive surface charge (poled +), and net negative surface charge (poled -) has been addressed. Protein/pathway alterations for skeletal muscle development were identified comparing proteomic profiles of C2C12 cells differentiated on poly(vinylidene fluoride), with similar cells differentiated on a polystyrene plate (control), using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Only significantly expressed proteins (P < 0.01, analysis of variance) were used for bioinformatic analyses. A total of 37 significantly expressed proteins were detected on the C2C12 proteome with PVDF "poled -" at 24 h, whereas on the PVDF "poled +", a total of 105 significantly expressed proteins were considered. At 5 days of differentiation, the number of significantly expressed proteins decreased to 23 and 31 in cells grown on negative and positive surface charge, respectively, the influence of surface charge being more explicit in some proteins. In both cases, proteins such as Fbn1, Hspg2, Rcn3, Tgm2, Mylpf, Anxa2, and Anxa6, involved in calcium-related signaling, were highly expressed during myoblast differentiation. Furthermore, some proteins involved in muscle contraction (Acta2, Anxa2, and Anxa6) were detected in the PVDF "poled +" sample. Upregulation of several proteins that enhance skeletal muscle development was detected in the PVDF "poled -" sample, including Ckm (422%), Tmem14c (384%), Serpinb6a (460%), adh7 (199%), and Car3 (171%), while for the "poled +" samples, these proteins were also upregulated at a smaller magnitude (254, 317, 253, 123, and 72%, respectively). Other differentially expressed proteins such as Mylpf (189%), Mybph (168%), and Mbnl1 (168%) were upregulated only in PVDF "poled -" samples, while Hba-a1 levels (581%) were increased in the PVDF "poled +" sample. On the other hand, cells cultured on non-poled samples have no differences with respect to the ones cultured on the control, in contrary to the poled films, with overall surface charge, demonstrating the relevance of scaffold surface charge on cell behavior. This study demonstrates that both positive and negative overall surface charges promote the differentiation of C2C12 cells through involvement of proteins related with the contraction of the skeletal muscle cells, with a more pronounced effect with the negative charged surfaces.


Assuntos
Proteoma , Proteômica , Diferenciação Celular , Cromatografia Líquida , Mioblastos , Proteoma/metabolismo , Espectrometria de Massas em Tandem
2.
Prep Biochem Biotechnol ; 52(5): 578-589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34533419

RESUMO

This study aimed to better characterize a recently purified stable extracellular alkaline peptidase produced by Penicillium aurantiogriseum (URM 4622) through fluorescence spectroscopy, far-UV circular dichroism, kinetic and thermodynamic models to understand its' structure-activity and denaturation. Fluorescence data showed that changing pH leads to tryptophan residues exposure to more hydrophilic environments at optimum activity pH 9.0 and 10.0. When thermally treated, it displayed less unfolding at these pH values, along with 4-fold less photoproducts formation than at neutral pH. Different pH CD spectra showed more ß-sheet (21.5-43.0%) than α-helix (1-6.2%). At pH9.0, more than 2-fold higher α-helix content than any other pH. The melting temperature (Tm) was observed between 50 and 60 °C at all pH studied, with lower Tm at pH 9.0-11.0 (54.9-50.3 °C). The protease displayed two phase transition, with two energies of denaturation, and a 4-fold higher thermal stability (ΔH°m) than reports for other microorganism's proteases. An irreversible folding transition occurs between 50 and 60 °C. It displayed energies of denaturation suggesting higher thermal stability than reported for other microorganism's proteases. These results help elucidating the applicability of this new stable protease.


Assuntos
Peptídeo Hidrolases , Dobramento de Proteína , Dicroísmo Circular , Endopeptidases , Concentração de Íons de Hidrogênio , Penicillium , Desnaturação Proteica , Espectrometria de Fluorescência , Temperatura , Termodinâmica
3.
RSC Adv ; 9(22): 12766-12783, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35515856

RESUMO

Early detection of cancer biomarkers can reduce cancer mortality rate. miRNAs are small non-coding RNAs whose expression changes upon the onset of various types of cancer. Biosensors that specifically detect such biomarkers can be engineered and integrated into point-of-care devices (POC) using label-free detection, high sensibility and compactness. In this paper, a new engineered Molecular Beacon (MB) construct used to detect miRNAs is presented. Such a construct is immobilized onto biosensor surfaces in a covalent and spatially oriented way using the photonic technology Light Assisted Molecular Immobilization (LAMI). The construct consists of a Cy3 labelled MB covalently attached to a light-switchable peptide. One MB construct contains a poly-A sequence in its loop region while the other contains a sequence complementary to the cancer biomarker miRNA-21. The constructs have been characterized by UV-Vis spectroscopy, mass spectrometry and HPLC. LAMI led to the successful immobilization of the engineered constructs onto thiol functionalized optically flat quartz slides and Silicon on Insulator (SOI) sensor surfaces. The immobilized Cy3 labelled MB construct has been imaged using confocal fluorescence microscopy (CFM). The bioavailability of the immobilized engineered MB biosensors was confirmed through specific hybridization with the Cy5 labelled complementary sequence and imaged by CFM and FRET. Hybridization kinetics have been monitored using steady state fluorescence spectroscopy. The label-free detection of miRNA-21 was also achieved by using integrated photonic sensing structures. The engineered light sensitive constructs can be immobilized onto thiol reactive surfaces and are currently being integrated in a POC device for the detection of cancer biomarkers.

4.
Int J Biol Macromol ; 118(Pt B): 1655-1666, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30170368

RESUMO

Circular dichroism (CD) and fluorescence spectroscopy (FS) were used to monitor the pH-dependent conformational and structural stability changes induced by temperature and UV light on the protease from Aspergillus tamarii URM4634 at different pH values. The formation of photoproducts, such as N-formylkynurenine, dityrosine and kynurenine, were monitored with FS. The pH-dependent melting temperatures (Tm) were determined using CD and FS from 20 to 90 °C. Conformational changes were correlated with the pH-dependent biochemical activities. CD revealed that the protease is rich in α-helices. Thermal denaturation was irreversible at all pH range and displayed Tm values from 42.8 to 67.8 °C (CD) and from 38 to 60.3 °C (FS), which the highest Tm was observed at pH 6. The light and temperature induced to the formation of photoproducts was more intense at high pH value. Despite the biochemical data shows optimum pH 9, the highest stability was at pH 6, maintaining 100% of activity after 24 h. The acquired data permits to select the best physicochemical parameters to secure the optimal activity and stability when used in biotechnological applications. Furthermore, the conformal changes induced by temperature in the protein are directly correlated with its level of biochemical activity.


Assuntos
Aspergillus/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Processos Fotoquímicos , Estabilidade Enzimática , Estrutura Secundária de Proteína
5.
J Biophotonics ; 11(9): e201700323, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29537137

RESUMO

Epidermal growth factor receptor (EGFR) plays a key role in regulating cell survival, proliferation and migration, and its overexpression and activation has been correlated with cancer progression. Cancer therapies targeting EGFR have been applied in the clinic with some success. We show, by confocal microscopy analysis, that illumination of adenocarcinomic human alveolar basal epithelial cells (Human A549-EGFR biosensor cell line) with 280 nm at irradiance levels up to 20 times weaker than the Ultraviolet B (UVB) solar output for short periods of time (15-45 minutes) prevents epidermal growth factor-mediated activation of EGFR located on the cell membrane, preventing or reducing cellular disaggregation, formation of filopodia and cell migration. This effect of Ultraviolet (UV) light illumination was confirmed further in a functional scratch assay, and shown to be more effective than that of a specific EGFR-signaling inhibitor. This new photonic approach may be applicable to the treatment of various types of cancer, alone or in combination with other therapies.


Assuntos
Movimento Celular/efeitos da radiação , Receptores ErbB/metabolismo , Fótons/uso terapêutico , Células A549 , Humanos , Fatores de Tempo , Raios Ultravioleta
6.
Sci Rep ; 7(1): 3736, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623267

RESUMO

Monoclonal antibodies have deserved a remarkable interest for more than 40 years as a vital tool for the treatment of various diseases. Still, there is a raising interest to develop advanced monoclonal antibody delivery systems able to tailor pharmacokinetics. Bevacizumab is a humanized immunoglobulin IgG1 used in antiangiogenic therapies due to its capacity to inhibit the interaction between vascular endothelial growth factor and its receptor. However, bevacizumab-based antiangiogenic therapy is not always effective due to poor treatment compliance associated to multiples administrations and drug resistance. In this work, we show a promising strategy of encapsulating bevacizumab to protect and deliver it, in a controlled manner, increasing the time between administrations and formulation shelf-life. Nanoencapsulation of bevacizumab represents a significant advance for selective antiangiogenic therapies since extracellular, cell surface and intracellular targets can be reached. The present study shows that bevacizumab-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles does not impair its native-like structure after encapsulation and fully retain the bioactivity, making this nanosystem a new paradigm for the improvement of angiogenic therapy.


Assuntos
Bevacizumab , Células Endoteliais da Veia Umbilical Humana/metabolismo , Nanopartículas , Neovascularização Patológica/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Bevacizumab/química , Bevacizumab/farmacocinética , Bevacizumab/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
7.
Eur J Pharm Sci ; 105: 127-136, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28502677

RESUMO

The evaluation of the structural stability and bioactivity of monoclonal antibodies (mAb) is a crucial step in the development of mAb therapeutic based products, since immunogenicity needs to be avoided. In the present work, a study was carried out to understand the changes on the structure and bioactivity of mAbs induced by different pH and temperature values. Structural changes of bevacizumab were monitored using fluorescence spectroscopy, circular dichroism (CD) and Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The secondary and tertiary structural content was monitored at six different pH values and at room temperature, upon heating up to 85°C and upon cooling down to 20°C. Furthermore, the temperature induced conformational changes were continuously monitored from 20°C to 85°C using fluorescence spectroscopy and circular dichroism, allowing to monitor the melting temperature of the protein at different pH values. The results showed that the thermal denaturation of bevacizumab was irreversible at all pH value. The conformational changes induced by pH were higher at extreme pH values (5, 9 and 10) than neutral pH. Thermal stability studies showed that pH6 was the pH that confer bevacizumab the highest structural stability. These studies were confirmed by in vitro studies, where bevacizumab's bioactivity was measured by cell viability/proliferation at all pH values at room temperature, and it was found a higher bioactivity for pH6. Biophysical and biological studies were correlated in order to understand the importance of the modifications in bevacizumab structural content on its bioactivity. However, a decrease in bevacizumab's bioactivity was observed for pH8, 9 and 10. Overall, this work demonstrated the usefulness of the spectroscopy techniques for estimating the stability of therapeutic mAb during formulation development.


Assuntos
Bevacizumab/química , Bevacizumab/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dicroísmo Circular , Temperatura Alta , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
8.
Expert Opin Drug Deliv ; 14(10): 1163-1176, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28005451

RESUMO

INTRODUCTION: Over the past two decades, therapeutic antibodies have demonstrated promising results in the treatment of a wide array of diseases. However, the application of antibody-based therapy implies multiple administrations and a high cost of antibody production, resulting in costly therapy. Another disadvantage inherent to antibody-based therapy is the limited stability of antibodies and the low level of tissue penetration. The use of nanoparticles as delivery systems for antibodies allows for a reduction in antibody dosing and may represent a suitable alternative to increase antibody stability Areas covered: We discuss different nanocarriers intended for the delivery of antibodies as well as the corresponding encapsulation methods. Recent developments in antibody nanoencapsulation, particularly the possible toxicity issues that may arise from entrapment of antibodies into nanocarriers, are also assessed. In addition, this review will discuss the alterations in antibody structure and bioactivity that occur with nanoencapsulation. Expert opinion: Nanocarriers can protect antibodies from degradation, ensuring superior bioavailability. Encapsulation of therapeutic antibodies may offer some advantages, including potential targeting, reduced immunogenicity and controlled release. Furthermore, antibody nanoencapsulation may aid in the incorporation of the antibodies into the cells, if intracellular components (e.g. intracellular enzymes, oncogenic proteins, transcription factors) are to be targeted.


Assuntos
Anticorpos/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Animais , Anticorpos/química , Anticorpos/toxicidade , Humanos , Nanopartículas/química , Nanopartículas/toxicidade
9.
PLoS One ; 11(10): e0165419, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27788212

RESUMO

The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm) showed a plasmon absorption band located within the near-infrared range (650-900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.


Assuntos
Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Fototerapia , Polímeros/química , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Ouro/toxicidade , Humanos , Ácido Hialurônico/química , Luz , Ácido Oleico/química , Estabilidade Proteica/efeitos da radiação , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Temperatura
12.
PLoS One ; 10(12): e0144454, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26656259

RESUMO

The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N-formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 µW and 0.3 µW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a critical role in the photochemical pathways a protein enters upon UV excitation.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Muramidase/química , Fotoquímica , Raios Ultravioleta , Animais , Embrião de Galinha , Proteínas do Ovo , Fluorescência , Ácido Hialurônico/química , Ácido Oleico/química , Oxirredução , Temperatura
13.
Biomacromolecules ; 16(2): 625-35, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25580615

RESUMO

In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against Gram-positive and Gram-negative bacteria, yeasts and filamentous fungi was observed. The antimicrobial activity of CM4-A200 was dependent on the physical contact of cells with the film surface. Furthermore, CM4-A200 films did not reveal a cytotoxic effect against both normal human skin fibroblasts and human keratinocytes. Finally, we have developed an optimized ex vivo assay with pig skin demonstrating the antimicrobial properties of the CM4-A200 cast films for skin applications.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bombyx , Elastina/química , Elastina/farmacologia , Animais , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/fisiologia , Suínos
14.
PLoS One ; 10(1): e0116737, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635856

RESUMO

Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm). Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760-765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the elimination of blood clots.


Assuntos
Plasminogênio/química , Raios Ultravioleta , Cistina/química , Ativação Enzimática/efeitos da radiação , Humanos , Simulação de Dinâmica Molecular , Oxirredução , Processos Fotoquímicos , Estrutura Secundária de Proteína , Desdobramento de Proteína , Proteólise
15.
PLoS One ; 9(11): e111617, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386651

RESUMO

The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. EGFR is activated upon binding to e.g. epidermal growth factor (EGF), leading to cell survival, proliferation and migration. EGFR overactivation is associated with tumor progression. We have previously shown that low dose UVB illumination of cancer cells overexpressing EGFR prior to adding EGF halted the EGFR signaling pathway. We here show that UVB illumination of the extracellular domain of EGFR (sEGFR) induces protein conformational changes, disulphide bridge breakage and formation of tryptophan and tyrosine photoproducts such as dityrosine, N-formylkynurenine and kynurenine. Fluorescence spectroscopy, circular dichroism and thermal studies confirm the occurrence of conformational changes. An immunoassay has confirmed that UVB light induces structural changes in the EGF binding site. A monoclonal antibody which competes with EGF for binding sEGFR was used. We report clear evidence that UVB light induces structural changes in EGFR that impairs the correct binding of an EGFR specific antibody that competes with EGF for binding EGFR, confirming that the 3D structure of the EGFR binding domain suffered conformational changes upon UV illumination. The irradiance used is in the same order of magnitude as the integrated intensity in the solar UVB range. The new photonic technology disables a key receptor and is most likely applicable to the treatment of various types of cancer, alone or in combination with other therapies.


Assuntos
Transdução de Sinais/efeitos da radiação , Raios Ultravioleta , Terapia Ultravioleta , Receptores ErbB/metabolismo , Humanos , Ligação Proteica , Conformação Proteica/efeitos da radiação
16.
PLoS One ; 9(10): e108376, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290100

RESUMO

Resistance rates are increasing among several problematic Gram-negative pathogens, a fact that has encouraged the development of new antimicrobial agents. This paper characterizes a Salmonella phage endolysin (Lys68) and demonstrates its potential antimicrobial effectiveness when combined with organic acids towards Gram-negative pathogens. Biochemical characterization reveals that Lys68 is more active at pH 7.0, maintaining 76.7% of its activity when stored at 4°C for two months. Thermostability tests showed that Lys68 is only completely inactivated upon exposure to 100°C for 30 min, and circular dichroism analysis demonstrated the ability to refold into its original conformation upon thermal denaturation. It was shown that Lys68 is able to lyse a wide panel of Gram-negative bacteria (13 different species) in combination with the outer membrane permeabilizers EDTA, citric and malic acid. While the EDTA/Lys68 combination only inactivated Pseudomonas strains, the use of citric or malic acid broadened Lys68 antibacterial effect to other Gram-negative pathogens (lytic activity against 9 and 11 species, respectively). Particularly against Salmonella Typhimurium LT2, the combinatory effect of malic or citric acid with Lys68 led to approximately 3 to 5 log reductions in bacterial load/CFUs after 2 hours, respectively, and was also able to reduce stationary-phase cells and bacterial biofilms by approximately 1 log. The broad killing capacity of malic/citric acid-Lys68 is explained by the destabilization and major disruptions of the cell outer membrane integrity due to the acidity caused by the organic acids and a relatively high muralytic activity of Lys68 at low pH. Lys68 demonstrates good (thermo)stability properties that combined with different outer membrane permeabilizers, could become useful to combat Gram-negative pathogens in agricultural, food and medical industry.


Assuntos
Antibacterianos/farmacologia , Endopeptidases/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Fagos de Salmonella/metabolismo , Antibacterianos/química , Permeabilidade da Membrana Celular , Ácido Cítrico/farmacologia , Endopeptidases/química , Endopeptidases/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Malatos/farmacologia , Fagos de Salmonella/genética , Termodinâmica
17.
Nano Lett ; 13(9): 4299-304, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23915079

RESUMO

Fully exploiting the capability of nano-optics to enhance light-matter interaction on the nanoscale is conditioned by bringing the nano-object to interrogate within the minuscule volume where the field is concentrated. There currently exists several approaches to control the immobilization of nano-objects but they all involve a cumbersome delivery step and require prior knowledge of the "hot spot" location. Herein, we present a novel technique in which the enhanced local field in the hot spot is the driving mechanism that triggers the binding of proteins via three-photon absorption. This way, we demonstrate exclusive immobilization of nanoscale amounts of bovine serum albumin molecules into the nanometer-sized gap of plasmonic dimers. The immobilized proteins can then act as a scaffold to subsequently attach an additional nanoscale object such as a molecule or a nanocrystal. This universal technique is envisioned to benefit a wide range of nano-optical functionalities including biosensing, enhanced spectroscopy like surface-enhanced Raman spectroscopy or surface-enhanced infrared absorption spectroscopy, as well as quantum optics.

18.
Nanoscale ; 5(19): 8874-8, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23598462

RESUMO

In a 2D self-organized crystalline structure more than 1000 unit-cells can be observed in a single image. Here we exploit the benefits from having a large number of observations of the same unit cell utilizing an image processing methodology. We obtain sub-picometer resolution data from a 50 pm image of graphene, revealing a 1% axial elongation and a 3 fold symmetry, indicating a chair conformation.

19.
PLoS One ; 7(12): e50733, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227203

RESUMO

In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2)) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein structure. Structural damage includes insulin dimerization via dityrosine cross-linking or disulphide bond disruption, which affects the hormone's structure and bioactivity.


Assuntos
Dimerização , Dissulfetos/metabolismo , Insulina/farmacologia , Insulina/efeitos da radiação , Fotólise/efeitos da radiação , Tirosina/análogos & derivados , Raios Ultravioleta , Absorção , Animais , Sítios de Ligação , Dicroísmo Circular , Reagentes de Ligações Cruzadas , Glucose/metabolismo , Cobaias , Humanos , Insulina/química , Cinética , Fotólise/efeitos dos fármacos , Estrutura Terciária de Proteína , Radioimunoensaio , Espectrometria de Fluorescência , Compostos de Sulfidrila/metabolismo , Tirosina/química , Tirosina/metabolismo
20.
PLoS One ; 7(7): e41322, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848462

RESUMO

The protein structure is a cumulative result of interactions between amino acid residues interacting with each other through space and/or chemical bonds. Despite the large number of high resolution protein structures, the "protein structure code" has not been fully identified. Our manuscript presents a novel approach to protein structure analysis in order to identify rules for spatial packing of amino acid pairs in proteins. We have investigated 8706 high resolution non-redundant protein chains and quantified amino acid pair interactions in terms of solvent accessibility, spatial and sequence distance, secondary structure, and sequence length. The number of pairs found in a particular environment is stored in a cell in an 8 dimensional data tensor. When plotting the cell population against the number of cells that have the same population size, a scale free organization is found. When analyzing which amino acid paired residues contributed to the cells with a population above 50, pairs of Ala, Ile, Leu and Val dominate the results. This result is statistically highly significant. We postulate that such pairs form "structural stability points" in the protein structure. Our data shows that they are in buried α-helices or ß-strands, in a spatial distance of 3.8-4.3Å and in a sequence distance >4 residues. We speculate that the scale free organization of the amino acid pair interactions in the 8D protein structure combined with the clear dominance of pairs of Ala, Ile, Leu and Val is important for understanding the very nature of the protein structure formation. Our observations suggest that protein structures should be considered as having a higher dimensional organization.


Assuntos
Aminoácidos/química , Simulação de Dinâmica Molecular , Dobramento de Proteína , Proteínas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...