Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(36): e2306414120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37643213

RESUMO

Targeted inhibitors of bromodomain and extraterminal (BET)-bromodomains and phosphatidylinositol-3-kinase (PI3K) signaling demonstrate potent but self-limited antilymphoma activity as single agents in the context of cellular Myelocytomatosis (cMYC) oncogene-dysregulation. However, combined PI3K and BET inhibition imparts synergistic anticancer activity with the potential for more sustained disease responses due to the mutual antagonism of compensatory epigenetic and signaling networks. Here, we describe the mechanistic and therapeutic validation of rationally designed dual PI3K/BET bromodomain inhibitors, built by linkage of established PI3K and BET inhibitor pharmacophores. The lead candidate demonstrates high selectivity, nanomolar range cellular potency, and compelling in vivo efficacy, including curative responses in the aggressive Eµ-Myc lymphoma model. These studies further support the therapeutic strategy of combined PI3K and BET inhibition and provide a potential step-change in approach to orthogonal MYC antagonism using optimized chimeric small-molecule technology.


Assuntos
Linfoma , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinase , Agressão , Epigenômica , Linfoma/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase
2.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283704

RESUMO

During T cell development, the first step in creating a unique T cell receptor (TCR) is genetic recombination of the TCRß chain. The quality of the new TCRß is assessed at the ß-selection checkpoint. Most cells fail this checkpoint and die, but the coordination of fate at the ß-selection checkpoint is not yet understood. We shed new light on fate determination during ß-selection using a selective inhibitor of histone deacetylase 6, ACY1215. ACY1215 disrupted the ß-selection checkpoint. Characterising the basis for this disruption revealed a new, pivotal stage in ß-selection, bookended by up-regulation of TCR co-receptors, CD28 and CD2, respectively. Within this "DN3bPre" stage, CD5 and Lef1 are up-regulated to reflect pre-TCR signalling, and their expression correlates with proliferation. These findings suggest a refined model of ß-selection in which a coordinated increase in expression of pre-TCR, CD28, CD5 and Lef1 allows for modulating TCR signalling strength and culminates in the expression of CD2 to enable exit from the ß-selection checkpoint.


Assuntos
Antígenos CD28 , Receptores de Antígenos de Linfócitos T alfa-beta , Antígenos CD28/genética , Antígenos CD28/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Histonas/metabolismo , Desacetilase 6 de Histona/metabolismo , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Front Oncol ; 12: 863329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677155

RESUMO

Rearrangements of the Mixed Lineage Leukemia (MLL/KMT2A) gene are present in approximately 10% of acute leukemias and characteristically define disease with poor outcome. Driven by the unmet need to develop better therapies for KMT2A-rearranged leukemia, we previously discovered that the novel anti-cancer agent, curaxin CBL0137, induces decondensation of chromatin in cancer cells, delays leukemia progression and potentiates standard of care chemotherapies in preclinical KMT2A-rearranged leukemia models. Based on the promising potential of histone deacetylase (HDAC) inhibitors as targeted anti-cancer agents for KMT2A-rearranged leukemia and the fact that HDAC inhibitors also decondense chromatin via an alternate mechanism, we investigated whether CBL0137 could potentiate the efficacy of the HDAC inhibitor panobinostat in KMT2A-rearranged leukemia models. The combination of CBL0137 and panobinostat rapidly killed KMT2A-rearranged leukemia cells by apoptosis and significantly delayed leukemia progression and extended survival in an aggressive model of MLL-AF9 (KMT2A:MLLT3) driven murine acute myeloid leukemia. The drug combination also exerted a strong anti-leukemia response in a rapidly progressing xenograft model derived from an infant with KMT2A-rearranged acute lymphoblastic leukemia, significantly extending survival compared to either monotherapy. The therapeutic enhancement between CBL0137 and panobinostat in KMT2A-r leukemia cells does not appear to be mediated through cooperative effects of the drugs on KMT2A rearrangement-associated histone modifications. Our data has identified the CBL0137/panobinostat combination as a potential novel targeted therapeutic approach to improve outcome for KMT2A-rearranged leukemia.

4.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004147

RESUMO

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Fosfatase 2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Fosforilação , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Especificidade por Substrato
5.
Cancer Discov ; 11(6): 1582-1599, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33436370

RESUMO

Internal tandem duplication of the FMS-like tyrosine kinase 3 gene (FLT3-ITD) occurs in 30% of all acute myeloid leukemias (AML). Limited clinical efficacy of FLT3 inhibitors highlights the need for alternative therapeutic modalities in this subset of disease. Using human and murine models of FLT3-ITD-driven AML, we demonstrate that FLT3-ITD promotes serine synthesis and uptake via ATF4-dependent transcriptional regulation of genes in the de novo serine biosynthesis pathway and neutral amino acid transport. Genetic or pharmacologic inhibition of PHGDH, the rate-limiting enzyme of de novo serine biosynthesis, selectively inhibited proliferation of FLT3-ITD AMLs in vitro and in vivo. Moreover, pharmacologic inhibition of PHGDH sensitized FLT3-ITD AMLs to the standard-of-care chemotherapeutic cytarabine. Collectively, these data reveal novel insights into FLT3-ITD-induced metabolic reprogramming and reveal a targetable vulnerability in FLT3-ITD AML. SIGNIFICANCE: FLT3-ITD mutations are common in AML and are associated with poor prognosis. We show that FLT3-ITD stimulates serine biosynthesis, thereby rendering FLT3-ITD-driven leukemias dependent upon serine for proliferation and survival. This metabolic dependency can be exploited pharmacologically to sensitize FLT3-ITD-driven AMLs to chemotherapy.This article is highlighted in the In This Issue feature, p. 1307.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Serina/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Linhagem Celular Tumoral/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Inibidores de Proteínas Quinases
6.
Clin Cancer Res ; 26(24): 6535-6549, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32988967

RESUMO

PURPOSE: Targeting Bcl-2 family members upregulated in multiple cancers has emerged as an important area of cancer therapeutics. While venetoclax, a Bcl-2-selective inhibitor, has had success in the clinic, another family member, Bcl-xL, has also emerged as an important target and as a mechanism of resistance. Therefore, we developed a dual Bcl-2/Bcl-xL inhibitor that broadens the therapeutic activity while minimizing Bcl-xL-mediated thrombocytopenia. EXPERIMENTAL DESIGN: We used structure-based chemistry to design a small-molecule inhibitor of Bcl-2 and Bcl-xL and assessed the activity against in vitro cell lines, patient samples, and in vivo models. We applied pharmacokinetic/pharmacodynamic (PK/PD) modeling to integrate our understanding of on-target activity of the dual inhibitor in tumors and platelets across dose levels and over time. RESULTS: We discovered AZD4320, which has nanomolar affinity for Bcl-2 and Bcl-xL, and mechanistically drives cell death through the mitochondrial apoptotic pathway. AZD4320 demonstrates activity in both Bcl-2- and Bcl-xL-dependent hematologic cancer cell lines and enhanced activity in acute myeloid leukemia (AML) patient samples compared with the Bcl-2-selective agent venetoclax. A single intravenous bolus dose of AZD4320 induces tumor regression with transient thrombocytopenia, which recovers in less than a week, suggesting a clinical weekly schedule would enable targeting of Bcl-2/Bcl-xL-dependent tumors without incurring dose-limiting thrombocytopenia. AZD4320 demonstrates monotherapy activity in patient-derived AML and venetoclax-resistant xenograft models. CONCLUSIONS: AZD4320 is a potent molecule with manageable thrombocytopenia risk to explore the utility of a dual Bcl-2/Bcl-xL inhibitor across a broad range of tumor types with dysregulation of Bcl-2 prosurvival proteins.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonas/farmacologia , Trombocitopenia/tratamento farmacológico , Proteína bcl-X/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose , Benzamidas/uso terapêutico , Proliferação de Células , Feminino , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piperidinas/uso terapêutico , Sulfonas/uso terapêutico , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nature ; 560(7717): 253-257, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069049

RESUMO

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Assuntos
Benzenossulfonatos/farmacologia , Senescência Celular/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Hidrazinas/farmacologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Sulfonamidas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Benzenossulfonatos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desenvolvimento de Medicamentos , Fibroblastos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/química , Histonas/metabolismo , Hidrazinas/uso terapêutico , Linfoma/enzimologia , Linfoma/genética , Lisina/química , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Sulfonamidas/uso terapêutico
9.
Mol Cancer Ther ; 15(9): 2030-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27406984

RESUMO

Targeting BET bromodomain proteins using small molecules is an emerging anticancer strategy with clinical evaluation of at least six inhibitors now underway. Although MYC downregulation was initially proposed as a key mechanistic property of BET inhibitors, recent evidence suggests that additional antitumor activities are important. Using the Eµ-Myc model of B-cell lymphoma, we demonstrate that BET inhibition with JQ1 is a potent inducer of p53-independent apoptosis that occurs in the absence of effects on Myc gene expression. JQ1 skews the expression of proapoptotic (Bim) and antiapoptotic (BCL-2/BCL-xL) BCL-2 family members to directly engage the mitochondrial apoptotic pathway. Consistent with this, Bim knockout or Bcl-2 overexpression inhibited apoptosis induction by JQ1. We identified lymphomas that were either intrinsically resistant to JQ1-mediated death or acquired resistance following in vivo exposure. Strikingly, in both instances BCL-2 was strongly upregulated and was concomitant with activation of RAS pathways. Eµ-Myc lymphomas engineered to express activated Nras upregulated BCL-2 and acquired a JQ1 resistance phenotype. These studies provide important information on mechanisms of apoptosis induction and resistance to BET-inhibition, while providing further rationale for the translation of BET inhibitors in aggressive B-cell lymphomas. Mol Cancer Ther; 15(9); 2030-41. ©2016 AACR.


Assuntos
Apoptose/genética , Azepinas/farmacologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Linfoma de Células B/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Triazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Genes myc , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/mortalidade , Linfoma de Células B/patologia , Camundongos , Família Multigênica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Cell ; 30(1): 59-74, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27374225

RESUMO

E proteins and their antagonists, the Id proteins, are transcriptional regulators important for normal hematopoiesis. We found that Id2 acts as a key regulator of leukemia stem cell (LSC) potential in MLL-rearranged acute myeloid leukemia (AML). Low endogenous Id2 expression is associated with LSC enrichment while Id2 overexpression impairs MLL-AF9-leukemia initiation and growth. Importantly, MLL-AF9 itself controls the E-protein pathway by suppressing Id2 while directly activating E2-2 expression, and E2-2 depletion phenocopies Id2 overexpression in MLL-AF9-AML cells. Remarkably, Id2 tumor-suppressive function is conserved in t(8;21) AML. Low expression of Id2 and its associated gene signature are associated with poor prognosis in MLL-rearranged and t(8;21) AML patients, identifying the Id2/E-protein axis as a promising new therapeutic target in AML.


Assuntos
Proteína 2 Inibidora de Diferenciação/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Translocação Genética , Animais , Proliferação de Células , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Regulação Leucêmica da Expressão Gênica , Humanos , Proteína 2 Inibidora de Diferenciação/metabolismo , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias Experimentais , Proteínas de Fusão Oncogênica/metabolismo , Prognóstico , Células-Tronco/citologia , Células-Tronco/metabolismo , Análise de Sobrevida , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo
11.
FEBS J ; 283(22): 4032-4046, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27112360

RESUMO

It is now well recognized that mutations, deregulated expression, and aberrant recruitment of epigenetic readers, writers, and erasers are fundamentally important processes in the onset and maintenance of many human tumors. The molecular, biological, and biochemical characteristics of a particular class of epigenetic erasers, the histone deacetylases (HDACs), have been extensively studied and small-molecule HDAC inhibitors (HDACis) have now been clinically approved for the treatment of human hemopoietic malignancies. This review explores our current understanding of the biological and molecular effects on tumor cells following HDACi treatment. The predominant responses include induction of tumor cell death and inhibition of proliferation that in experimental models have been linked to therapeutic efficacy. However, tumor cell-intrinsic responses to HDACi, including modulating tumor immunogenicity have also been described and may have substantial roles in mediating the antitumor effects of HDACi. We posit that the field has failed to fully reconcile the biological consequences of exposure to HDACis with the molecular events that underpin these responses, however progress is being made. Understanding the pleiotrophic activities of HDACis on tumor cells will hopefully fast track the development of more potent and selective HDACi that may be used alone or in combination to improve patient outcomes.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Acetilação/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
12.
Cell Rep ; 14(8): 1858-66, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26904937

RESUMO

Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eµ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.


Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Imidazóis/farmacologia , Linfoma/tratamento farmacológico , Piperazinas/farmacologia , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Sistemas CRISPR-Cas , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Linfoma/genética , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
Cold Spring Harb Protoc ; 2014(11): 1196-201, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25368310

RESUMO

Immunohistochemistry is commonly used to show the presence of apoptotic cells in situ. In this protocol, B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples are fixed and sectioned, and fragmented DNA (a feature of apoptotic cells) is end-labeled by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Immunohistochemical methods are then used to detect the labeled DNA and identify B-cell lymphoma cells in the last stage of apoptosis. Because the assay can lead to false-positive results, it is advisable to carry out an additional assay (e.g., immunohistochemistry for active caspase-3) to confirm the presence of apoptotic cells.


Assuntos
Apoptose , Imuno-Histoquímica/métodos , Linfoma de Células B/patologia , Animais , DNA/análise , Fragmentação do DNA , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Marcação In Situ das Extremidades Cortadas , Camundongos , Vorinostat
14.
Cold Spring Harb Protoc ; 2014(11): 1202-6, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25368311

RESUMO

Flow cytometry assays are often used to detect apoptotic cells in in vitro cultures. Depending on the experimental model, these assays can also be useful in evaluating apoptosis in vivo. In this protocol, we describe a propidium iodide (PI) flow cytometry assay to evaluate B-cell lymphomas that have undergone apoptosis in vivo. B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples collected from the lymph nodes and/or the spleen are used to prepare a single-cell suspension that is exposed to a hypotonic solution containing the fluorochrome PI. The DNA content of the cells, now labeled with PI, is analyzed by flow cytometry. Nuclear DNA content is lost during apoptosis, resulting in a hypodiploid (or sub-G1) DNA profile during flow cytometry. In contrast, healthy cells display a sharp diploid DNA profile.


Assuntos
Apoptose , Citometria de Fluxo/métodos , Linfoma de Células B/patologia , Propídio/metabolismo , Coloração e Rotulagem/métodos , Animais , DNA/análise , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Camundongos , Vorinostat
15.
Cold Spring Harb Protoc ; 2014(11): 1125-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25368316

RESUMO

Apoptosis is a mode of cell death that is essential in multicellular organisms for the removal of superfluous, damaged, or potentially dangerous cells during development, infection, or normal tissue homeostasis. To prevent inflammation, cells undergoing apoptosis produce "find-me" signals that trigger the recruitment of phagocytes, which clear the apoptotic cells on recognition of "eat-me" signals. Despite the loss of billions of cells per day by apoptosis in the human body, the number of apoptotic cells found in healthy tissue is surprisingly low and reflects the efficiency of this process. However, in certain conditions (e.g., in cancer cells responding to chemotherapy), the number of apoptotic cells is too high to be efficiently cleared by phagocytes, and apoptotic cells can be observed. In these situations, the detection of apoptosis may be helpful in monitoring disease progression as well as in predicting the responses of tumors to anticancer therapies. Here we introduce various methods for monitoring apoptotic cells in vivo using a murine model of B-cell lymphoma and a solid tumor xenograft.


Assuntos
Apoptose , Linfoma de Células B/patologia , Animais , Xenoenxertos/patologia , Camundongos , Transplante de Neoplasias
16.
Cold Spring Harb Protoc ; 2014(10): pdb.prot082511, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25275108

RESUMO

Positron emission tomography (PET) can be used to monitor the uptake of the labeled glucose analog fluorodeoxyglucose (¹8F-FDG), a process that is generally believed to reflect viable tumor cell mass. The use of ¹8F-FDG PET can be helpful in documenting over time the reduction in tumor mass volume in response to anticancer drug therapy in vivo. In this protocol, we describe how to monitor the response of murine B-cell lymphomas to an inducer of apoptosis, the anticancer drug vorinostat (a histone deacetylase inhibitor). B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with vorinostat. The tracer ¹8F-FDG is then injected into the mice at several time points, and its uptake is monitored using PET. Because the uptake of ¹8F-FDG is not a direct measure of apoptosis, an additional direct method proving that apoptotic cells are present should also be performed.


Assuntos
Antineoplásicos/uso terapêutico , Fluordesoxiglucose F18 , Ácidos Hidroxâmicos/uso terapêutico , Linfoma de Células B/diagnóstico por imagem , Linfoma de Células B/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cold Spring Harb Protoc ; 2014(10): pdb.prot082529, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25275109

RESUMO

Positron emission tomography (PET) is used to monitor the uptake of the labeled glucose analogue fluorodeoxyglucose (¹8F-FDG) by solid tumor cells, a process generally believed to reflect viable tumor cell mass. The use of ¹8F-FDG exploits the high demand for glucose in tumor cells, and serves to document over time the response of a solid tumor to an inducer of apoptosis. The apoptosis inducer crizotinib is a small-molecule inhibitor of c-Met, a receptor tyrosine kinase that is often dysregulated in human tumors. In this protocol, we describe how to monitor the response of a solid tumor to crizotinib. Human gastric tumor cells (GTL-16 cells) are injected into recipient mice and, on tumor formation, the mice are treated with crizotinib. The tracer ¹8F-FDG is then injected into the mice at several time points, and its uptake is monitored using PET. Because ¹8F-FDG uptake varies widely among different tumor models, preliminary experiments should be performed with each new model to determine its basal level of ¹8F-FDG uptake. Verifying that the basal level of uptake is sufficiently above background levels will assure accurate quantitation. Because ¹8F-FDG uptake is not a direct measure of apoptosis, it is advisable to carry out an additional direct method to show the presence of apoptotic cells.


Assuntos
Antineoplásicos/uso terapêutico , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Crizotinibe , Modelos Animais de Doenças , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cancer Ther ; 12(12): 2709-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24092806

RESUMO

Histone deacetylase inhibitors (HDACi) are anticancer agents that induce hyperacetylation of histones, resulting in chromatin remodeling and transcriptional changes. In addition, nonhistone proteins, such as the chaperone protein Hsp90, are functionally regulated through hyperacetylation mediated by HDACis. Histone acetylation is thought to be primarily regulated by HDACs 1, 2, and 3, whereas the acetylation of Hsp90 has been proposed to be specifically regulated through HDAC6. We compared the molecular and biologic effects induced by an HDACi with broad HDAC specificity (vorinostat) with agents that predominantly inhibited selected class I HDACs (MRLB-223 and romidepsin). MRLB-223, a potent inhibitor of HDACs 1 and 2, killed tumor cells using the same apoptotic pathways as the HDAC 1, 2, 3, 6, and 8 inhibitor vorinostat. However, vorinostat induced histone hyperacetylation and killed tumor cells more rapidly than MRLB-223 and had greater therapeutic efficacy in vivo. FDCP-1 cells dependent on the Hsp90 client protein Bcr-Abl for survival, were killed by all HDACis tested, concomitant with caspase-dependent degradation of Bcr-Abl. These studies provide evidence that inhibition of HDAC6 and degradation of Bcr-Abl following hyperacetylation of Hsp90 is likely not a major mechanism of action of HDACis as had been previously posited.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/mortalidade , Linfoma/patologia , Camundongos , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Blood ; 121(15): 2964-74, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23403624

RESUMO

Pharmacological strategies capable of directly targeting MYC are elusive. Previous studies have shown that MYC-driven lymphomagenesis is associated with mammalian target of rapamycin (mTOR) activation and a MYC-evoked DNA damage response (DDR) transduced by phosphatidylinositol-3-kinase (PI3K)-related kinases (DNA-PK, ATM, and ATR). Here we report that BEZ235, a multitargeted pan-PI3K/dual-mTOR inhibitor, potently killed primary Myc-driven B-cell lymphomas and human cell lines bearing IG-cMYC translocations. Using pharmacologic and genetic dissection of PI3K/mTOR signaling, dual DDR/mTORC1 inhibition was identified as a key mediator of apoptosis. Moreover, apoptosis was initiated at drug concentrations insufficient to antagonize PI3K/mTORC2-regulated AKT phosphorylation. p53-independent induction of the proapoptotic BH3-only protein BMF was identified as a mechanism by which dual DDR/mTORC1 inhibition caused lymphoma cell death. BEZ235 treatment induced apoptotic tumor regressions in vivo that correlated with suppression of mTORC1-regulated substrates and reduced H2AX phosphorylation and also with feedback phosphorylation of AKT. These mechanistic studies hold important implications for the use of multitargeted PI3K inhibitors in the treatment of hematologic malignancies. In particular, the newly elucidated role of PI3K-related DDR kinases in response to PI3K inhibitors offers a novel therapeutic opportunity for the treatment of hematologic malignancies with an MYC-driven DDR.


Assuntos
Apoptose/efeitos dos fármacos , Imidazóis/farmacologia , Linfoma de Células B/prevenção & controle , Quinolinas/farmacologia , Animais , Western Blotting , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Receptor com Domínio Discoidina 1 , Relação Dose-Resposta a Droga , Citometria de Fluxo , Histonas/metabolismo , Humanos , Linfoma de Células B/genética , Linfoma de Células B/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Análise de Sobrevida , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
20.
Adv Cancer Res ; 116: 165-97, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23088871

RESUMO

Histone deacetylase inhibitors (HDACi) can elicit a range of biological responses that impede the growth and/or survival of tumor cells. Depending on the physiological context, HDACi can induce apoptosis via two well-defined apoptotic pathways; the intrinsic/mitochondrial pathway and the death receptor (DR)/extrinsic pathway. A number of groups have demonstrated that overexpression of prosurvival Bcl-2 family members significantly reduces HDACi-mediated tumor cell death and therapeutic efficacy in preclinical models. In many cases, HDACi activate the intrinsic pathway via upregulation of a number of proapoptotic BH3-only Bcl-2 family genes including Bim, Bid, and Bmf. Additionally, HDACi can engage the extrinsic pathway through upregulation of DR expression, reductions in c-FLIP, and upregulation of ligands such as TRAIL. Overall, it appears that activation of the intrinsic apoptotic pathway is the predominant mechanism of HDACi-induced tumor cell death; however, the DR pathway may also be engaged, either to amplify the apoptotic signal through the intrinsic pathway or to directly induce cell death.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Histona Desacetilases/química , Humanos , Neoplasias/enzimologia , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...