Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38405925

RESUMO

Astrocytes safeguard the homeostasis of the central nervous system1,2. Despite their prominent morphological plasticity under conditions that challenge the brain's adaptive capacity3-5, the classification of astrocytes, and relating their molecular make-up to spatially devolved neuronal operations that specify behavior or metabolism, remained mostly futile6,7. Although it seems unexpected in the era of single-cell biology, the lack of a major advance in stratifying astrocytes under physiological conditions rests on the incompatibility of 'neurocentric' algorithms that rely on stable developmental endpoints, lifelong transcriptional, neurotransmitter, and neuropeptide signatures for classification6-8 with the dynamic functional states, anatomic allocation, and allostatic plasticity of astrocytes1. Simplistically, therefore, astrocytes are still grouped as 'resting' vs. 'reactive', the latter referring to pathological states marked by various inducible genes3,9,10. Here, we introduced a machine learning-based feature recognition algorithm that benefits from the cumulative power of published single-cell RNA-seq data on astrocytes as a reference map to stepwise eliminate pleiotropic and inducible cellular features. For the healthy hypothalamus, this walk-back approach revealed gene regulatory networks (GRNs) that specified subsets of astrocytes, and could be used as landmarking tools for their anatomical assignment. The core molecular censuses retained by astrocyte subsets were sufficient to stratify them by allostatic competence, chiefly their signaling and metabolic interplay with neurons. Particularly, we found differentially expressed mitochondrial genes in insulin-sensing astrocytes and demonstrated their reciprocal signaling with neurons that work antagonistically within the food intake circuitry. As a proof-of-concept, we showed that disrupting Mfn2 expression in astrocytes reduced their ability to support dynamic circuit reorganization, a time-locked feature of satiety in the hypothalamus, thus leading to obesity in mice. Overall, our results suggest that astrocytes in the healthy brain are fundamentally more heterogeneous than previously thought and topologically mirror the specificity of local neurocircuits.

2.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34272258

RESUMO

Mutations in the X-linked cell adhesion protein PCDH19 lead to seizures, cognitive impairment, and other behavioral comorbidities when present in a mosaic pattern. Neither the molecular mechanisms underpinning this disorder nor the function of PCDH19 itself are well understood. By combining RNA in situ hybridization with immunohistochemistry and analyzing single-cell RNA sequencing datasets, we reveal Pcdh19 expression in cortical interneurons and provide a first account of the subtypes of neurons expressing Pcdh19/PCDH19, both in the mouse and the human cortex. Our quantitative analysis of the Pcdh19 mutant mouse exposes subtle changes in cortical layer composition, with no major alterations of the main axonal tracts. In addition, Pcdh19 mutant animals, particularly females, display preweaning behavioral changes, including reduced anxiety and increased exploratory behavior. Importantly, our experiments also reveal an effect of the social environment on the behavior of wild-type littermates of Pcdh19 mutant mice, which show alterations when compared with wild-type animals not housed with mutants.


Assuntos
Caderinas , Comportamento Exploratório , Animais , Caderinas/genética , Feminino , Camundongos , Mutação/genética , Neurônios , Convulsões , Meio Social
3.
Neuropsychopharmacology ; 41(6): 1579-87, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26471256

RESUMO

Electrophysiological and neurochemical studies implicate cholinergic signaling in the basolateral amygdala (BLA) in behaviors related to stress. Both animal studies and human clinical trials suggest that drugs that alter nicotinic acetylcholine receptor (nAChR) activity can affect behaviors related to mood and anxiety. Clinical studies also suggest that abnormalities in cholinergic signaling are associated with major depressive disorder, whereas pre-clinical studies have implicated both ß2 subunit-containing (ß2*) and α7 nAChRs in the effects of nicotine in models of anxiety- and depression-like behaviors. We therefore investigated whether nAChR signaling in the amygdala contributes to stress-mediated behaviors in mice. Local infusion of the non-competitive non-selective nAChR antagonist mecamylamine or viral-mediated downregulation of the ß2 or α7 nAChR subunit in the amygdala all induced robust anxiolytic- and antidepressant-like effects in several mouse behavioral models. Further, whereas α7 nAChR subunit knockdown was somewhat more effective at decreasing anxiety-like behavior, only ß2 subunit knockdown decreased resilience to social defeat stress and c-fos immunoreactivity in the BLA. In contrast, α7, but not ß2, subunit knockdown effectively reversed the effect of increased ACh signaling in a mouse model of depression. These results suggest that signaling through ß2* nAChRs is essential for baseline excitability of the BLA, and a decrease in signaling through ß2 nAChRs alters anxiety- and depression-like behaviors even in unstressed animals. In contrast, stimulation of α7 nAChRs by acetylcholine may mediate the increased depression-like behaviors observed during the hypercholinergic state observed in depressed individuals.


Assuntos
Tonsila do Cerebelo/fisiologia , Receptores Nicotínicos/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Masculino , Mecamilamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas Nicotínicos/farmacologia , Fisostigmina/farmacologia , Transdução de Sinais/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/fisiologia
4.
Neuropsychopharmacology ; 40(4): 938-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25288485

RESUMO

Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders.


Assuntos
Alcaloides/uso terapêutico , Antidepressivos/uso terapêutico , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Estresse Psicológico , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Azocinas/uso terapêutico , Modelos Animais de Doenças , Sinergismo Farmacológico , Fluoxetina/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Elevação dos Membros Posteriores , Hipocampo/metabolismo , Humanos , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Quinolizinas/uso terapêutico , Receptor 5-HT1A de Serotonina/genética , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/etiologia , Estresse Psicológico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...