Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(8): 12156-12173, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943045

RESUMO

Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-ß-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-ß-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 µmol gFW-1) above control plant levels (0.03441 µmol gFW-1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Nanotubos de Carbono/química , Peróxido de Hidrogênio/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Nanoestruturas/química , Plantas , Folhas de Planta/química , Agroquímicos/análise , Agroquímicos/metabolismo , Agroquímicos/farmacologia
2.
Front Plant Sci ; 12: 691295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381480

RESUMO

Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...