Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5650, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163192

RESUMO

Most biological rates depend on the rate of respiration. Temperature variation is typically considered the main driver of daily plant respiration rates, assuming a constant daily respiration rate at a set temperature. Here, we show empirical data from 31 species from temperate and tropical biomes to demonstrate that the rate of plant respiration at a constant temperature decreases monotonically with time through the night, on average by 25% after 8 h of darkness. Temperature controls less than half of the total nocturnal variation in respiration. A new universal formulation is developed to model and understand nocturnal plant respiration, combining the nocturnal decrease in the rate of plant respiration at constant temperature with the decrease in plant respiration according to the temperature sensitivity. Application of the new formulation shows a global reduction of 4.5 -6 % in plant respiration and an increase of 7-10% in net primary production for the present-day.


Assuntos
Folhas de Planta , Plantas , Dióxido de Carbono , Ecossistema , Respiração , Temperatura , Árvores
2.
Sci Total Environ ; 722: 137799, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197157

RESUMO

Water deficit, exacerbated by global population increases and climate change, necessitates the investigation of alternative non-traditional water sources to augment existing supplies. Indirect potable reuse (IPR) represents a promising alternative water source in water-stressed regions. Of high concern is the presence of pathogenic microorganisms in wastewater, such as enteric viruses, protozoa and bacteria. Therefore, a greater understanding of the potential impact to human health is required. The aim of this research was to use a quantitative microbial risk assessment (QMRA) approach to calculate the probability of potential pathogen infection risk to the public in surface waters used for a range of recreational activities under scenarios: 1) existing de facto wastewater reuse conditions; 2) after augmentation with conventionally treated wastewater; and 3) after augmentation with reclaimed wastewater from proposed IPR schemes. Forty-four 31 l samples were collected from river sites and a coastal wastewater treatment works from July 2016-May 2017. Concentrations of faecal indicator organisms (enterococci, faecal coliforms, somatic coliphages and Bacteroides phages) determined using culture-based approaches and selected pathogens (adenovirus, Salmonella and Cryptosporidium) determined using molecular approaches (qPCR) were used to inform QMRA. The mean probability of infection from adenovirus under de facto conditions was high (>0.90) for all recreational activities, per single event. The risk of adenovirus and Cryptosporidium infection increased under augmentation scenario (2) (mean probability 0.95-1.00 and 0.01-0.06 per single event, respectively). Adenovirus and Cryptosporidium infection risk decreased under reclaimed water augmentation scenario (3) (mean probability <0.79, excluding swimming, which remained 1.00 and <0.01 per single event, respectively). Pathogen reduction after reclaimed water augmentation in surface waters impacted by de facto reuse, provides important evidence for alternative water supply option selection. As such, this evidence may inform water managers and the public of the potential benefits of IPR and improve acceptance of such practices in the future.


Assuntos
Água Potável , Purificação da Água , Animais , Criptosporidiose , Cryptosporidium , Humanos , Águas Residuárias , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...