Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 248(0): 381-391, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37846514

RESUMO

The lithium-air (Li-air) battery offers one of the highest practical specific energy densities of any battery system at >400 W h kgsystem-1. The practical cell is expected to operate in air, which is flowed into the positive porous electrode where it forms Li2O2 on discharge and is released as O2 on charge. The presence of CO2 and H2O in the gas stream leads to the formation of oxidatively robust side products, Li2CO3 and LiOH, respectively. Thus, a gas handling system is needed to control the flow and remove CO2 and H2O from the gas supply. Here we present the first example of an integrated Li-air battery with in-line gas handling, that allows control over the flow and composition of the gas supplied to a Li-air cell and simultaneous evaluation of the cell and scrubber performance. Our findings reveal that O2 flow can drastically impact the capacity of cells and confirm the need for redox mediators. However, we show that current air-electrode designs translated from fuel cell technology are not suitable for Li-air cells as they result in the need for higher gas flow rates than required theoretically. This puts the scrubber under a high load and increases the requirements for solvent saturation and recapture. Our results clarify the challenges that must be addressed to realise a practical Li-air system and will provide vital insight for future modelling and cell development.

2.
Inorg Chem ; 62(44): 18003-18008, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37828836

RESUMO

A mixed-valence heterometallic nonanuclear [3 × 3] grid complex, [CuI2CuII6FeIII(L)6](BF4)5·MeOH·9H2O (1; MeOH = methanol), was synthesized by a one-pot reaction of copper and iron ions with multidentate ligand 2,6-bis[5-(2-pyridinyl)-1H-pyrazol-3-yl]pyridine (H2L). 1 showed five quasi-reversible one-electron redox processes centered at +0.74, +0.60, +0.39, +0.27, and -0.13 V versus SCE, assignable to four CuI/CuII processes and one FeII/FeIII couple, respectively. The two-electron-oxidized species [CuII8FeIII(L)6](PF6)7·4MeOH·7H2O (12eOx), the two-electron-reduced species [CuI4CuII4FeIII(L)6](PF6)3·2H2O (12eRed), and the three-electron-reduced species [CuI4CuII4FeII(L)6](PF6)2·5MeOH·H2O (13eRed) were isolated electrochemically. The four redox isomers were characterized by single-crystal X-ray analysis, SQUID magnetometry, and Mössbauer spectroscopy.

3.
Chem Commun (Camb) ; 59(72): 10801-10804, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37594189

RESUMO

A multi-component coordination compound, in which ruthenium antenna complexes are connected to a polyoxotungstate core is presented. This hybrid cluster effectively promotes the electrochemical conversion of CO2 to C1 feedstocks, the selectivity of which can be controlled by the acidity of the media.

4.
J Am Chem Soc ; 145(30): 16365-16373, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478562

RESUMO

Bridged or caged polycyclic hydrocarbons have rigid structures that project substituents into precise regions of 3D space, making them attractive as linking groups in materials science and as building blocks for medicinal chemistry. The efficient synthesis of new or underexplored classes of such compounds is, therefore, an important objective. Herein, we describe the silver(I)-catalyzed rearrangement of 1,4-disubstituted cubanes to cuneanes, which are strained hydrocarbons that have not received much attention since they were first described in 1970. The synthesis of 2,6-disubstituted or 1,3-disubstituted cuneanes can be achieved with high regioselectivities, with the regioselectivity being dependent on the electronic character of the cubane substituents. A preliminary assessment of cuneanes as scaffolds for medicinal chemistry suggests cuneanes could serve as isosteric replacements of trans-1,4-disubstituted cyclohexanes and 1,3-disubstituted benzenes. An analogue of the anticancer drug sonidegib was synthesized, in which the 1,2,3-trisubstituted benzene was replaced with a 1,3-disubstituted cuneane.

5.
Chembiochem ; 24(18): e202300250, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391388

RESUMO

'Bacterial-type' ferredoxins host a cubane [4Fe4S]2+/+ cluster that enables these proteins to mediate electron transfer and facilitate a broad range of biological processes. Peptide maquettes based on the conserved cluster-forming motif have previously been reported and used to model the ferredoxins. Herein we explore the integration of a [4Fe4S]-peptide maquette into a H2 -powered electron transport chain. While routinely formed under anaerobic conditions, we illustrate by electron paramagnetic resonance (EPR) analysis that these maquettes can be reconstituted under aerobic conditions by using photoactivated NADH to reduce the cluster at 240 K. Attempts to tune the redox properties of the iron-sulfur cluster by introducing an Fe-coordinating selenocysteine residue were also explored. To demonstrate the integration of these artificial metalloproteins into a semi-synthetic electron transport chain, we utilize a ferredoxin-inspired [4Fe4S]-peptide maquette as the redox partner in the hydrogenase-mediated oxidation of H2 .


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/química , Hidrogenase/metabolismo , Oxirredução , Peptídeos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica
6.
Angew Chem Int Ed Engl ; 62(23): e202302446, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988545

RESUMO

Herein, we report the synthesis and characterization of a new class of hybrid Wells-Dawson polyoxometalate (POM) containing a diphosphoryl group (P2 O6 X) of the general formula [P2 W17 O57 (P2 O6 X)]6- (X=O, NH, or CR1 R2 ). Modifying the bridging unit X was found to impact the redox potentials of the POM. The ease with which a range of α-functionalized diphosphonic acids (X=CR1 R2 ) can be prepared provides possibilities to access diverse functionalized hybrid POMs. Compared to existing phosphonate hybrid Wells-Dawson POMs, diphosphoryl-substituted POMs offer a wider tunable redox window and enhanced hydrolytic stability. This study provides a basis for the rational design and synthesis of next-generation hybrid Wells-Dawson POMs.

7.
J Am Chem Soc ; 145(16): 9052-9058, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36974427

RESUMO

Understanding ion transport in solid materials is crucial in the design of electrochemical devices. Of particular interest in recent years is the study of ion transport across 2-dimensional, atomically thin crystals. In this contribution, we describe the use of a host-guest hybrid redox material based on polyoxometalates (POMs) encapsulated within the internal cavities of single-walled carbon nanotubes (SWNTs) as a model system for exploring ion transport across atomically thin structures. The nanotube sidewall creates a barrier between the redox-active molecules and bulk electrolytes, which can be probed by addressing the redox states of the POMs electrochemically. The electrochemical properties of the {POM}@SWNT system are strongly linked to the nature of the cation in the supporting electrolyte. While acidic electrolytes facilitate rapid, exhaustive, reversible electron transfer and stability during redox cycling, alkaline-salt electrolytes significantly limit redox switching of the encapsulated species. By "plugging" the {POM}@SWNT material with C60-fullerenes, we demonstrate that the primary mode of charge balancing is proton transport through the graphenic lattice of the SWNT sidewalls. Kinetic analysis reveals little kinetic isotope effect on the standard heterogeneous electron transfer rate constant, suggesting that ion transport through the sidewalls is not rate-limiting in our system. The unique capacity of protons and deuterons to travel through graphenic layers unlocks the redox chemistry of nanoconfined redox materials, with significant implications for the use of carbon-coated materials in applications ranging from electrocatalysis to energy storage and beyond.

8.
Inorg Chem ; 62(8): 3585-3591, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763348

RESUMO

Organofunctionalization of polyoxometalates (POMs) allows the preparation of hybrid molecular systems with tunable electronic properties. Currently, there are only a handful of approaches that allow for the fine-tuning of POM frontier molecular orbitals in a predictable manner. Herein, we demonstrate a new functionalization method for the Wells-Dawson polyoxotungstate [P2W18O62]6- using arylarsonic acids which enables modulation of the redox and photochemical properties. Arylarsonic groups facilitate orbital mixing between the organic and inorganic moieties, and the nature of the organic substituents significantly impacts the redox potentials of the POM core. The photochemical response of the hybrid POMs correlates with their computed and experimentally estimated lowest unoccupied molecular orbital energies, and the arylarsonic hybrids are found to exhibit increased visible light photosensitivity comparable with that of arylphosphonic analogues. Arylarsonic hybridization offers a route to stable and tunable organic-inorganic hybrid systems for a range of redox and photochemical applications.

9.
Angew Chem Int Ed Engl ; 62(12): e202216066, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637995

RESUMO

The mixing of [V10 O28 ]6- decavanadate anions with a dicationic gemini surfactant (gem) leads to the spontaneous self-assembly of surfactant-templated nanostructured arrays of decavanadate clusters. Calcination of the material under air yields highly crystalline, sponge-like V2 O5 (gem-V2 O5 ). In contrast, calcination of the amorphous tetrabutylammonium decavanadate allows isolation of a more agglomerated V2 O5 consisting of very small crystallites (TBA-V2 O5 ). Electrochemical analysis of the materials' performance as lithium-ion intercalation electrodes highlights the role of morphology in cathode performance. The large crystallites and long-range microstructure of the gem-V2 O5 cathode deliver higher initial capacity and superior capacity retention than TBA-V2 O5 . The smaller crystallite size and higher surface area of TBA-V2 O5 allow faster lithium insertion and superior rate performance to gem-V2 O5 .

10.
J Am Chem Soc ; 145(2): 1206-1215, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36586130

RESUMO

Boron nitride nanotubes (BNNTs) are an emerging class of molecular container offering new functionalities and possibilities for studying molecules at the nanoscale. Herein, BNNTs are demonstrated as highly effective nanocontainers for polyoxometalate (POM) molecules. The encapsulation of POMs within BNNTs occurs spontaneously at room temperature from an aqueous solution, leading to the self-assembly of a POM@BNNT host-guest system. Analysis of the interactions between the host-nanotube and guest-molecule indicate that Lewis acid-base interactions between W═O groups of the POM (base) and B-atoms of the BNNT lattice (acid) likely play a major role in driving POM encapsulation, with photoactivated electron transfer from BNNTs to POMs in solution also contributing to the process. The transparent nature of the BNNT nanocontainer allows extensive investigation of the guest-molecules by photoluminescence, Raman, UV-vis absorption, and EPR spectroscopies. These studies revealed considerable energy and electron transfer processes between BNNTs and POMs, likely mediated via defect energy states of the BNNTs and resulting in the quenching of BNNT photoluminescence at room temperature, the emergence of new photoluminescence emissions at cryogenic temperatures (<100 K), a photochromic response, and paramagnetic signals from guest-POMs. These phenomena offer a fresh perspective on host-guest interactions at the nanoscale and open pathways for harvesting the functional properties of these hybrid systems.


Assuntos
Nanotubos , Nanotubos/química , Compostos de Boro/química
11.
ACS Appl Mater Interfaces ; 14(32): 36551-36556, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929802

RESUMO

Development of sodium anodes, both hard carbon (HC) and metallic, is dependent on the discovery of electrolyte formations and additives able to stabilize the interphase and support Na+ transport. Halogen salt additives are known to lower the energy barrier for the Na-ion charge transfer at the interface and facilitate stable Na plating/stripping in a symmetric cell configuration. Here, a halogen-rich additive for the sodium-ion battery electrolyte, 2-chloro-1,1,2-trifluoroethyl difluoromethyl ether (enflurane), is reported. Enflurane offers a simple molecular alternative to salt-based additives. The additive is also shown to improve the cycling performance of sodium metal electrodes. Our analysis demonstrates that enflurane is preferentially reduced at the HC electrode over propylene carbonate and is incorporated into the solid electrolyte interphase (SEI). The result is a thin, halogen-rich SEI that offers better charge transport properties and stability during cycling compared to that formed in the additive-free electrolyte. Additionally, enflurane inhibits polarization of metallic sodium electrodes, and when included in HC half-cells at 10 v/v %, it improves the reversible specific capacity and stability.

12.
Chemistry ; 28(57): e202201899, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35838635

RESUMO

The host-guest interaction can remarkably alter the physiochemical properties of composite materials. It is crucial to clarify the mechanism by revealing the influence of the host on the electronic structure of the guest molecules. Herein, we study the structural variation of polyoxometalates (POMs) after being confined in single-walled carbon nanotubes (SWNT). What we found is that in addition to the reported charge transfer from SWNT to POM, an intramolecular electron transfer within a single POM cluster can be observed in the POM@SWNT composites. Moreover, the charge density on the bridged oxygen of POMs is prominently enhanced. The structural change and electron reconfiguration of POMs upon encapsulation in SWNT significantly speed up electron and ion transport, leading to the improved electrochemical performance for sodium ions storage.

13.
Chemistry ; 28(50): e202201478, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35661287

RESUMO

The synthesis of new morphinan opioids by the addition of photochemically generated carbon-centered radicals to substrates containing an enone in the morphinan C-ring, is described. Using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer photocatalyst, diverse radical donors can be used to prepare a variety of C8-functionalized morphinan opioids. This work demonstrates the late-stage modification of complex, highly functionalized substrates.


Assuntos
Carbono , Morfinanos , Analgésicos Opioides , Catálise , Compostos de Amônio Quaternário
14.
Angew Chem Int Ed Engl ; 61(8): e202115619, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-34919306

RESUMO

We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-transfer interactions with SWNTs to provide detailed mechanistic insights into the redox-driven encapsulation of these and similar nanoclusters. We are able to correlate the relative redox potentials of the encapsulated clusters with the level of SWNT oxidation in the resultant hybrid materials and use this to show that precise redox tuning is a necessary requirement for successful encapsulation. The host-guest redox materials described here exhibit exceptional electrochemical stability, retaining up to 86 % of their charge capacity over 1000 oxidation/reduction cycles, despite the typical lability and solution-phase electrochemical instability of the polyoxomolybdates we have explored. Our findings illustrate the broad applicability of the redox-driven encapsulation approach to the design and fabrication of tunable, highly conductive, ultra-stable nanoconfined energy materials.

15.
Chem Soc Rev ; 51(1): 293-328, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34889926

RESUMO

This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Ânions , Polieletrólitos
16.
Chem Commun (Camb) ; 57(79): 10162-10165, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34516598

RESUMO

Mononuclear and icosanuclear spin-crossover complexes, [FeII(HL)2](BF4)2 (1) and [FeII20(L)24](BF4)16 (2), were synthesized using an asymmetric multidentate ligand (HL). 1 has a bis-chelate structure with two protonated ligands, while 2 has a ring-shape structure comprising four [2 × 2] grid moieties and four mononuclear units.

17.
Chem Soc Rev ; 50(19): 10895-10916, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34396376

RESUMO

Confinement of molecules within nanocontainers can be a powerful tool for controlling the states of guest-molecules, tuning properties of host-nanocontainers and triggering the emergence of synergistic properties within the host-guest systems. Among nanocontainers, single-walled carbon nanotubes - atomically thin cylinders of carbon, with typical diameters below 2 nm and lengths reaching macroscopic dimensions - are ideal hosts for a variety of materials, including inorganic crystals, and organic, inorganic and organometallic molecules. The extremely high aspect ratio of carbon nanotubes is complemented by their functional properties, such as exceptionally high electrical conductivity and thermal, chemical and electrochemical stability, making carbon nanotubes ideal connectors between guest-molecules and macroscopic electrodes. The idea of harnessing nanotubes both as nanocontainers and nanoelectrodes has led to the incorporation of redox-active species entrapped within nanotube cavities where the host-nanotubes may serve as conduits of electrons to/from the guest-molecules, whilst restricting the molecular positions, orientations, and local environment around the redox centres. This review gives a contemporary overview of the status of molecular redox chemistry within ultra-narrow carbon nanotubes (nanotubes with diameters approaching molecular dimensions) highlighting the opportunities, pitfalls, and gaps in understanding of electrochemistry in confinement, including the role of nanotube diameter, size and shape of guest-molecules, type of electrolyte, solvent and other experimental conditions.

18.
Chem Sci ; 12(21): 7377-7387, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34163827

RESUMO

We induce and study reactions of polyoxometalate (POM) molecules, [PW12O40]3- (Keggin) and [P2W18O62]6- (Wells-Dawson), at the single-molecule level. Several identical carbon nanotubes aligned side by side within a bundle provided a platform for spatiotemporally resolved imaging of ca. 100 molecules encapsulated within the nanotubes by transmission electron microscopy (TEM). Due to the entrapment of POM molecules their proximity to one another is effectively controlled, limiting molecular motion in two dimensions but leaving the third dimension available for intermolecular reactions between pairs of neighbouring molecules. By coupling the information gained from high resolution structural and kinetics experiments via the variation of key imaging parameters in the TEM, we shed light on the reaction mechanism. The dissociation of W-O bonds, a key initial step of POM reactions, is revealed to be reversible by the kinetic analysis, followed by an irreversible bonding of POM molecules to their nearest neighbours, leading to a continuous tungsten oxide nanowire, which subsequently transforms into amorphous tungsten-rich clusters due to progressive loss of oxygen atoms. The overall intermolecular reaction can therefore be described as a step-wise reductive polycondensation of POM molecules, via an intermediate state of an oxide nanowire. Kinetic analysis enabled by controlled variation of the electron flux in TEM revealed the reaction to be highly flux-dependent, which leads to reaction rates too fast to follow under the standard TEM imaging conditions. Although this presents a challenge for traditional structural characterisation of POM molecules, we harness this effect by controlling the conditions around the molecules and tuning the imaging parameters in TEM, which combined with theoretical modelling and image simulation, can shed light on the atomistic mechanisms of the reactions of POMs. This approach, based on the direct space and real time chemical reaction analysis by TEM, adds a new method to the arsenal of single-molecule kinetics techniques.

19.
Chem Soc Rev ; 50(10): 5863-5883, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34027958

RESUMO

This Tutorial Review describes how the development of dissolved redox-active molecules is beginning to unlock the potential of three of the most promising 'next-generation' battery technologies - lithium-air, lithium-sulfur and redox-flow batteries. Redox-active molecules act as mediators in lithium-air and lithium-sulfur batteries, shuttling charge between electrodes and substrate systems and improving cell performance. In contrast, they act as the charge-storing components in flow batteries. However, in each case the performance of the molecular species is strongly linked to their solubility, electrochemical and chemical stability, and redox potentials. Herein we describe key examples of the use of redox-active molecules in each of these battery technologies and discuss the challenges and opportunities presented by the development and use of redox-active molecules in these applications. We conclude by issuing a "call to arms" to our colleagues within the wider chemical community, whose synthetic, computational, and analytical skills can potentially make invaluable contributions to the development of next-generation batteries and help to unlock of world of potential energy-storage applications.

20.
Biomater Sci ; 9(16): 5397-5406, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-33988192

RESUMO

3D printable materials based on polymeric ionic liquids (PILs) capable of controlling the synthesis and stabilisation of silver nanoparticles (AgNPs) and their synergistic antimicrobial activity are reported. The interaction of the ionic liquid moieties with the silver precursor enabled the controlled in situ formation and stabilisation of AgNPs via extended UV photoreduction after the printing process, thus demonstrating an effective decoupling of the device manufacturing from the on-demand generation of nanomaterials, which avoids the potential aging of the nanomaterials through oxidation. The printed devices showed a multi-functional and tuneable microbicidal activity against Gram positive (B. subtilis) and Gram negative (E. coli) bacteria and against the mould Aspergillus niger. While the polymeric material alone was found to be bacteriostatic, the AgNPs conferred bactericidal properties to the material. Combining PIL-based materials with functionalities, such as in situ and photoactivated on-demand fabricated antimicrobial AgNPs, provides a synergistic functionality that could be harnessed for a variety of applications, especially when coupled to the freedom of design inherent to additive manufacturing techniques.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Anti-Infecciosos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...