Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1011245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547310

RESUMO

The most common intracellular bacterial infection is Wolbachia pipientis, a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector-WalE1, which encodes an alpha-synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression of WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates in the host cell cytosol. We next show that WalE1 co-immunoprecipitates with the host protein Past1, although might not directly interact with it, and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO3, a hallmark of endocytosis defects. We also show that flies expressing WalE1 suffer from endocytosis defects in larval nephrocytes. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between Wolbachia and a host protein involved in endocytosis and point to yet another important host cell process impinged upon by Wolbachia's WalE1 effector.


Assuntos
Drosophila , Wolbachia , Masculino , Animais , Drosophila/microbiologia , Wolbachia/metabolismo , Sementes , Reprodução , Endocitose , Drosophila melanogaster , Simbiose/genética
2.
ISME Commun ; 4(1): ycad003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38304079

RESUMO

Virus symbionts are important mediators of ecosystem function, yet we know little of their diversity and ecology in natural populations. The alarming decline of pollinating insects in many regions of the globe, especially the European honey bee, Apis mellifera, has been driven in part by worldwide transmission of virus pathogens. Previous work has examined the transmission of known honey bee virus pathogens to wild bee populations, but only a handful of studies have investigated the native viromes associated with wild bees, limiting epidemiological predictors associated with viral pathogenesis. Further, variation among different bee species might have important consequences in the acquisition and maintenance of bee-associated virome diversity. We utilized comparative metatranscriptomics to develop a baseline description of the RNA viromes associated with wild bee pollinators and to document viral diversity, community composition, and structure. Our sampling includes five wild-caught, native bee species that vary in social behavior as well as managed honey bees. We describe 26 putatively new RNA virus species based on RNA-dependent RNA polymerase phylogeny and show that each sampled bee species was associated with a specific virus community composition, even among sympatric populations of distinct host species. From 17 samples of a single host species, we recovered a single virus species despite over 600 km of distance between host populations and found strong evidence for isolation by distance in associated viral populations. Our work adds to the small number of studies examining viral prevalence and community composition in wild bees.

3.
mSystems ; 9(2): e0118223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38259099

RESUMO

In eusocial insects, the health of the queens-the colony founders and sole reproductive females-is a primary determinant for colony success. Queen failure in the honey bee Apis mellifera, for example, is a major concern of beekeepers who annually suffer colony losses, necessitating a greater knowledge of queen health. Several studies on the microbiome of honey bees have characterized its diversity and shown its importance for the health of worker bees, the female non-reproductive caste. However, the microbiome of workers differs from that of queens, which, in comparison, is still poorly studied. Thus, direct investigations of the queen microbiome are required to understand colony-level microbiome assembly, functional roles, and evolution. Here, we used metagenomics to comprehensively characterize the honey bee queen microbiome. Comparing samples from different geographic locations and breeder sources, we show that the microbiome of queens is mostly shaped by the environment experienced since early life and is predicted to play roles in the breakdown of the diet and protection from pathogens and xenobiotics. We also reveal that the microbiome of queens comprises only four candidate core bacterial species, Apilactobacillus kunkeei, Lactobacillus apis, Bombella apis, and Commensalibacter sp. Interestingly, in addition to bacteria, we show that bacteriophages infect the queen microbiome, for which Lactobacillaceae are predicted to be the main reservoirs. Together, our results provide the basis to understand the honey bee colony microbiome assemblage, can guide improvements in queen-rearing processes, and highlight the importance of considering bacteriophages for queen microbiome health and microbiome homeostasis in eusocial insects.IMPORTANCEThe queen caste plays a central role in colony success in eusocial insects, as queens lay eggs and regulate colony behavior and development. Queen failure can cause colonies to collapse, which is one of the major concerns of beekeepers. Thus, understanding the biology behind the queen's health is a pressing issue. Previous studies have shown that the bee microbiome plays an important role in worker bee health, but little is known about the queen microbiome and its function in vivo. Here, we characterized the queen microbiome, identifying for the first time the present species and their putative functions. We show that the queen microbiome has predicted nutritional and protective roles in queen association and comprises only four consistently present bacterial species. Additionally, we bring to attention the spread of phages in the queen microbiome, which increased in abundance in failing queens and may impact the fate of the colony.


Assuntos
Bacteriófagos , Microbiota , Abelhas , Feminino , Animais , Bacteriófagos/genética , Microbiota/genética , Reprodução , Metagenoma
4.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38030223

RESUMO

RNA modifications, such as methylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including viruses, bacteria, fungi, and animals. The algorithm consistently identified a m5C at the central position of a GCU motif. However, it also identified a m5C in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this is a frequent false prediction. In the absence of further validation, several published predictions of m5C in a GCU context should be reconsidered, including those from human coronavirus and human cerebral organoid samples.


Assuntos
Algoritmos , RNA , Animais , Humanos , RNA/genética , Metilação , Análise de Sequência de RNA
5.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205495

RESUMO

RNA modifications, such as méthylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including virus, bacteria, fungi, and animals. The algorithm consistently identified a 5-methylcytosine at the central position of a GCU motif. However, it also identified a 5-methylcytosine in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this a frequent false prediction. In the absence of further validation, several published predictions of 5-methylcytosine in human coronavirus and human cerebral organoid RNA in a GCU context should be reconsidered.

6.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909520

RESUMO

The most common intracellular bacterial infection is Wolbachia pipientis, a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector - WalE1, which encodes a synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates, separate from Wolbachia cells. We next show that WalE1 co-immunoprecipitates with the host protein Past1 and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO3, a hallmark of endocytosis defects. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between a Wolbachia secreted effector and a host protein and point to yet another important host cell process impinged upon by Wolbachia.

7.
Microbiol Resour Announc ; 12(2): e0134122, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36656000

RESUMO

As part of society-wide efforts to promote open access in science, the American Society for Microbiology journals are piloting the publication of companion articles highlighting rigorous data resources. The simultaneous publication of original research and data resource articles will increase awareness of, and access to, verified data sets that are critical to scientific progress. Companion articles in Microbiology Resource Announcements and two research journals, mSystems and Applied and Environmental Microbiology, will serve as an initial experiment to promote open and reproducible science.

8.
Appl Environ Microbiol ; 89(2): e0215322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656005

RESUMO

As part of society-wide efforts to promote open access in science, the American Society for Microbiology journals are piloting the publication of companion articles highlighting rigorous data resources. The simultaneous publication of original research and data resource articles will increase awareness of, and access to, verified data sets that are critical to scientific progress. Companion articles in Microbiology Resource Announcements and two research journals, mSystems and Applied and Environmental Microbiology, will serve as an initial experiment to promote open and reproducible science.

9.
mSystems ; 8(1): e0127122, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36656010

RESUMO

As part of society-wide efforts to promote open access in science, the American Society for Microbiology journals are piloting the publication of companion articles highlighting rigorous data resources. The simultaneous publication of original research and data resource articles will increase awareness of, and access to, verified data sets that are critical to scientific progress. Companion articles in Microbiology Resource Announcements and two research journals, mSystems and Applied and Environmental Microbiology, will serve as an initial experiment to promote open and reproducible science.

10.
Infect Immun ; 91(2): e0055722, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36648231

RESUMO

Wolbachia pipientis is an incredibly widespread bacterial symbiont of insects, present in an estimated 25 to 52% of species worldwide. Wolbachia is faithfully maternally transmitted both in a laboratory setting and in the wild. In an established infection, Wolbachia is primarily intracellular, residing within host-derived vacuoles that are associated with the endoplasmic reticulum. However, Wolbachia also frequently transfers between host species, requiring an extracellular stage to its life cycle. Indeed, Wolbachia has been moved between insect species for the precise goal of controlling populations. The use of Wolbachia in this application requires that we better understand how it initiates and establishes new infections. Here, we designed a novel method for live tracking Wolbachia cells during infection using a combination of stains and microscopy. We show that live Wolbachia cells are taken up by host cells at a much faster rate than dead Wolbachia cells, indicating that Wolbachia bacteria play a role in their own uptake and that Wolbachia colonization is not just a passive process. We also show that the host actin cytoskeleton must be intact for this to occur and that drugs that disrupt the actin cytoskeleton effectively abrogate Wolbachia uptake. The development of this live infection assay will assist in future efforts to characterize Wolbachia factors used during host infection.


Assuntos
Wolbachia , Animais , Vacúolos , Actinas , Simbiose , Drosophila melanogaster/microbiologia
11.
bioRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711506

RESUMO

The intracellular bacterium Wolbachia is a common symbiont of many arthropods and nematodes, well studied for its impacts on host reproductive biology. However, its broad success as a vertically transmitted infection cannot be attributed to manipulations of host reproduction alone. Using the Drosophila melanogaster model and their natively associated Wolbachia strain "wMel", we show that Wolbachia infection supports fly development and buffers against nutritional stress. Wolbachia infection across several fly genotypes and a range of nutrient conditions resulted in reduced pupal mortality, increased adult emergence, and larger size. We determined that the exogenous supplementation of pyrimidines rescued these phenotypes in the Wolbachia-free, flies suggesting that Wolbachia plays a role in providing this metabolite that is normally limiting for fly growth. Additionally, Wolbachia was sensitive to host pyrimidine metabolism: Wolbachia titers increased upon transgenic knockdown of the Drosophila de novo pyrimidine synthesis pathway but not knockdown of the de novo purine synthesis pathway. We propose that Wolbachia acts as a nutritional symbiont to supplement fly development and enhance host fitness.

12.
Methods Mol Biol ; 2626: 291-307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715911

RESUMO

Wolbachia pipientis is a widespread vertically transmitted intracellular bacterium naturally present in the model organism Drosophila melanogaster. As Wolbachia is present in a large number of Drosophila lines, it is critical for researchers to be able to identify which of their stocks maintain this infection to avoid any potential confounding variables. Here, we describe methods for detecting the bacterium and assessing the infection, including polymerase chain reaction (PCR) of DNA, multi-locus sequence typing (MLST) to identify strains, western blotting for protein detection, and immunohistochemistry and fluorescence in situ hybridization (FISH) of Drosophila ovaries to visually detect Wolbachia by fluorescence microscopy.


Assuntos
Drosophila melanogaster , Wolbachia , Animais , Drosophila melanogaster/genética , Wolbachia/genética , Tipagem de Sequências Multilocus , Hibridização in Situ Fluorescente , Drosophila/genética
13.
Microbiol Resour Announc ; 11(11): e0079822, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36194126

RESUMO

Insect-associated fungi play an important role in wild and agricultural communities. We present a draft genome sequence of an entomopathogenic strain from the fungal genus Aspergillus, isolated from a honey bee pupa.

14.
ISME J ; 16(9): 2160-2168, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726020

RESUMO

Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.


Assuntos
Suplementos Nutricionais , Lisina , Animais , Abelhas , Dieta , Larva/microbiologia , Simbiose
15.
PLoS Pathog ; 18(3): e1010393, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294495

RESUMO

Arthropod endosymbiont Wolbachia pipientis is part of a global biocontrol strategy to reduce the replication of mosquito-borne RNA viruses such as alphaviruses. We previously demonstrated the importance of a host cytosine methyltransferase, DNMT2, in Drosophila and viral RNA as a cellular target during pathogen-blocking. Here we report a role for DNMT2 in Wolbachia-induced alphavirus inhibition in Aedes species. Expression of DNMT2 in mosquito tissues, including the salivary glands, is elevated upon virus infection. Notably, this is suppressed in Wolbachia-colonized animals, coincident with reduced virus replication and decreased infectivity of progeny virus. Ectopic expression of DNMT2 in cultured Aedes cells is proviral, increasing progeny virus infectivity, and this effect of DNMT2 on virus replication and infectivity is dependent on its methyltransferase activity. Finally, examining the effects of Wolbachia on modifications of viral RNA by LC-MS show a decrease in the amount of 5-methylcytosine modification consistent with the down-regulation of DNMT2 in Wolbachia colonized mosquito cells and animals. Collectively, our findings support the conclusion that disruption of 5-methylcytosine modification of viral RNA is a vital mechanism operative in pathogen blocking. These data also emphasize the essential role of epitranscriptomic modifications in regulating fundamental alphavirus replication and transmission processes.


Assuntos
Aedes , Alphavirus , Artrópodes , Flavivirus , Wolbachia , 5-Metilcitosina/metabolismo , Alphavirus/genética , Animais , Artrópodes/genética , Flavivirus/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral , Wolbachia/fisiologia
16.
Trends Microbiol ; 30(2): 185-198, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34253453

RESUMO

Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.


Assuntos
Artrópodes , Rickettsia , Wolbachia , Animais , Masculino , Filogenia , Simbiose , Wolbachia/genética
17.
Infect Immun ; 89(12): e0043021, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34543120

RESUMO

Despite the maintenance of YopP/J alleles throughout the human-pathogenic Yersinia lineage, the benefit of YopP/J-induced phagocyte death for Yersinia pathogenesis in animals is not obvious. To determine how the sequence divergence of YopP/J has impacted Yersinia virulence, we examined protein polymorphisms in this type III secreted effector protein across 17 Yersinia species and tested the consequences of polymorphism in a murine model of subacute systemic yersiniosis. Our evolutionary analysis revealed that codon 177 has been subjected to positive selection; the Yersinia enterocolitica residue had been altered from a leucine to a phenylalanine in nearly all Yersinia pseudotuberculosis and Yersinia pestis strains examined. Despite this change being minor, as both leucine and phenylalanine have hydrophobic side chains, reversion of YopJF177 to the ancestral YopJL177 variant yielded a Y. pseudotuberculosis strain with enhanced cytotoxicity toward macrophages, consistent with previous findings. Surprisingly, expression of YopJF177L in the mildly attenuated ksgA- background rendered the strain completely avirulent in mice. Consistent with this hypothesis that YopJ activity relates indirectly to Yersinia pathogenesis in vivo, ksgA- strains lacking functional YopJ failed to kill macrophages but actually regained virulence in animals. Also, treatment with the antiapoptosis drug suramin prevented YopJ-mediated macrophage cytotoxicity and enhanced Y. pseudotuberculosis virulence in vivo. Our results demonstrate that Yersinia-induced cell death is detrimental for bacterial pathogenesis in this animal model of illness and indicate that positive selection has driven YopJ/P and Yersinia evolution toward diminished cytotoxicity and increased virulence, respectively.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Yersiniose/microbiologia , Yersinia/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Suscetibilidade a Doenças , Humanos , Mutação , Virulência/genética , Fatores de Virulência , Yersinia/patogenicidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-34546865

RESUMO

Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture's most important pollinator. One factor that may influence colony health is the microbial community. Although honey bee worker guts have a characteristic community of bee-specific microbes, the honey bee queen digestive tracts are colonized predominantly by a single acetic acid bacterium tentatively named 'Parasaccharibacter apium'. This bacterium is related to flower-associated microbes such as Saccharibacter floricola, and initial phylogenetic analyses placed it as sister to these environmental bacteria. We used a combination of phylogenetic and sequence identity methods to better resolve evolutionary relationships among 'P. apium', strains in the genus Saccharibacter, and strains in the closely related genus Bombella. Interestingly, measures of genome-wide average nucleotide identity and aligned fraction, coupled with phylogenetic placement, indicate that many strains labelled as 'P. apium' and Saccharibacter species are all the same species as Bombella apis. We propose reclassifying these strains as Bombella apis and outline the data supporting that classification below.


Assuntos
Acetobacteraceae , Ácidos Graxos , Acetobacteraceae/genética , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Abelhas , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Viruses ; 13(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452330

RESUMO

Eukaryotic nucleic acid methyltransferase (MTase) proteins are essential mediators of epigenetic and epitranscriptomic regulation. DNMT2 belongs to a large, conserved family of DNA MTases found in many organisms, including holometabolous insects such as fruit flies and mosquitoes, where it is the lone MTase. Interestingly, despite its nomenclature, DNMT2 is not a DNA MTase, but instead targets and methylates RNA species. A growing body of literature suggests that DNMT2 mediates the host immune response against a wide range of pathogens, including RNA viruses. Curiously, although DNMT2 is antiviral in Drosophila, its expression promotes virus replication in mosquito species. We, therefore, sought to understand the divergent regulation, function, and evolution of these orthologs. We describe the role of the Drosophila-specific host protein IPOD in regulating the expression and function of fruit fly DNMT2. Heterologous expression of these orthologs suggests that DNMT2's role as an antiviral is host-dependent, indicating a requirement for additional host-specific factors. Finally, we identify and describe potential evidence of positive selection at different times throughout DNMT2 evolution within dipteran insects. We identify specific codons within each ortholog that are under positive selection and find that they are restricted to four distinct protein domains, which likely influence substrate binding, target recognition, and adaptation of unique intermolecular interactions. Collectively, our findings highlight the evolution of DNMT2 in Dipteran insects and point to structural, regulatory, and functional differences between mosquito and fruit fly homologs.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Dípteros/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/microbiologia , Interações Hospedeiro-Patógeno , Wolbachia/fisiologia , Adaptação Biológica , Aedes/enzimologia , Aedes/genética , Aedes/imunologia , Aedes/microbiologia , Sequência de Aminoácidos , Animais , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/imunologia , Dípteros/classificação , Dípteros/enzimologia , Dípteros/imunologia , Proteínas de Drosophila/química , Proteínas de Drosophila/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Evolução Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência , Wolbachia/genética
20.
mBio ; 12(3): e0050321, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34101488

RESUMO

Fungal pathogens, among other stressors, negatively impact the productivity and population size of honey bees, one of our most important pollinators (1, 2), in particular their brood (larvae and pupae) (3, 4). Understanding the factors that influence disease incidence and prevalence in brood may help us improve colony health and productivity. Here, we examined the capacity of a honey bee-associated bacterium, Bombella apis, to suppress the growth of fungal pathogens and ultimately protect bee brood from infection. Our results showed that strains of B. apis inhibit the growth of two insect fungal pathogens, Beauveria bassiana and Aspergillus flavus, in vitro. This phenotype was recapitulated in vivo; bee broods supplemented with B. apis were significantly less likely to be infected by A. flavus. Additionally, the presence of B. apis reduced sporulation of A. flavus in the few bees that were infected. Analyses of biosynthetic gene clusters across B. apis strains suggest antifungal candidates, including a type 1 polyketide, terpene, and aryl polyene. Secreted metabolites from B. apis alone were sufficient to suppress fungal growth, supporting the hypothesis that fungal inhibition is mediated by an antifungal metabolite. Together, these data suggest that B. apis can suppress fungal infections in bee brood via secretion of an antifungal metabolite. IMPORTANCE Fungi can play critical roles in host microbiomes (5-7), yet bacterial-fungal interactions are understudied. For insects, fungi are the leading cause of disease (5, 8). In particular, populations of the European honey bee (Apis mellifera), an agriculturally and economically critical species, have declined in part due to fungal pathogens. The presence and prevalence of fungal pathogens in honey bees have far-reaching consequences, endangering other species and threatening food security (1, 2, 9). Our research highlights how a bacterial symbiont protects bee brood from fungal infection. Further mechanistic work could lead to the development of new antifungal treatments.


Assuntos
Acetobacteraceae/fisiologia , Abelhas/microbiologia , Fungos/patogenicidade , Interações Microbianas , Micoses/prevenção & controle , Simbiose , Animais , Interações entre Hospedeiro e Microrganismos , Larva/microbiologia , Micoses/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...