Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Cardiovasc Med ; 9: 960419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684605

RESUMO

Introduction: We sought to explore biomarkers of coronary atherosclerosis in an unbiased fashion. Methods: We analyzed 665 patients (mean ± SD age, 56 ± 11 years; 47% male) from the GLOBAL clinical study (NCT01738828). Cases were defined by the presence of any discernable atherosclerotic plaque based on comprehensive cardiac computed tomography (CT). De novo Bayesian networks built out of 37,000 molecular measurements and 99 conventional biomarkers per patient examined the potential causality of specific biomarkers. Results: Most highly ranked biomarkers by gradient boosting were interleukin-6, symmetric dimethylarginine, LDL-triglycerides [LDL-TG], apolipoprotein B48, palmitoleic acid, small dense LDL, alkaline phosphatase, and asymmetric dimethylarginine. In Bayesian analysis, LDL-TG was directly linked to atherosclerosis in over 95% of the ensembles. Genetic variants in the genomic region encoding hepatic lipase (LIPC) were associated with LIPC gene expression, LDL-TG levels and with atherosclerosis. Discussion: Triglyceride-rich LDL particles, which can now be routinely measured with a direct homogenous assay, may play an important role in atherosclerosis development. Clinical trial registration: GLOBAL clinical study (Genetic Loci and the Burden of Atherosclerotic Lesions); [https://clinicaltrials.gov/ct2/show/NCT01738828?term=NCT01738828&rank=1], identifier [NCT01738828].

3.
Nutr Metab Cardiovasc Dis ; 31(8): 2490-2506, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34172319

RESUMO

BACKGROUND AND AIMS: Cholesterol and triglycerides are risk factors for developing cardiovascular disease. Therefore, appropriate cells and assays are required to discover and develop dual cholesterol and fatty acid inhibitors. A predictive hyperlipidemic animal model is needed to evaluate mechanism of action of lead molecule for therapeutic indications. METHODS AND RESULTS: Primary hepatocytes from rat, hamster, rabbit, and humans were compared for suitability to screen compounds by de novo lipogenesis (DNL) using14C-acetate. Hyperlipidemic hamsters were used to evaluate efficacy and mode of action. In rat hepatocytes DNL assay, both the central moiety and carbon chain length influenced the potency of lipogenesis inhibition. In hyperlipidemic hamsters, ETC-1002 decreased plasma cholesterol and triglycerides by 41% and 49% at the 30 mg/kg dose. Concomitant decreases in non-esterified fatty acids (-34%) and increases in ketone bodies (20%) were associated with induction of hepatic CPT1-α. Reductions in proatherogenic VLDL-C and LDL-C (-71% and -64%) occurred partly through down-regulation of DGAT2 and up-regulation of LPL and PDK4. Activation of PLIN1 and PDK4 dampened adipogenesis and showed inverse correlation with adipose mass. Hepatic concentrations of cholesteryl ester and TG decreased by 67% and 64%, respectively. Body weight decreased with concomitant decreases in epididymal fat. Plasma and liver concentrations of ETC-1002 agreed with the observed dose-response efficacy. CONCLUSIONS: Taken together, ETC-1002 reduced proatherogenic lipoproteins, hepatic lipids and adipose tissues in hyperlipidemic hamsters via induction of LPL, CPT1-α, PDK4, and PLIN1, and downregulation of DGAT2. These characteristics may be useful in the treatment of fatty livers that causes non-alcoholic steatohepatitis.


Assuntos
Colesterol/biossíntese , Ácidos Dicarboxílicos/farmacologia , Ácidos Graxos/biossíntese , Hepatócitos/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Lipogênese/efeitos dos fármacos , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos/sangue , Ácidos Graxos/farmacologia , Hepatócitos/enzimologia , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/enzimologia , Lipase Lipoproteica/metabolismo , Masculino , Mesocricetus , Perilipina-1/metabolismo , Proteínas Quinases/metabolismo , Coelhos , Ratos Wistar
4.
J Am Coll Nutr ; 39(1): 1-4, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31880503

RESUMO

Poor nutrition is the leading cause of our chronic disease and obesity crisis. To unleash the potential of personalized nutrition to reverse this crisis, five leading nutrition organizations have affiliated together as the American Nutrition Association® (ANA®). The ANA envisions a society of Healthy People Powered by Nutrition. The ANA brings that vision to life through its mission to Champion the Science and Practice of Personalized Nutrition and its strategy to Educate, Certify, Advocate, and Connect.


Assuntos
Ciências da Nutrição/métodos , Ciências da Nutrição/organização & administração , Medicina de Precisão/métodos , Sociedades Médicas , Dieta Saudável , Humanos , Estados Unidos
5.
Arterioscler Thromb Vasc Biol ; 38(5): 1178-1190, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29449335

RESUMO

OBJECTIVE: Bempedoic acid (BemA; ETC-1002) is a novel drug that targets hepatic ATP-citrate lyase to reduce cholesterol biosynthesis. In phase 2 studies, BemA lowers elevated low-density lipoprotein cholesterol (LDL-C) in hypercholesterolemic patients. In the present study, we tested the ability of BemA to decrease plasma cholesterol and LDL-C and attenuate atherosclerosis in a large animal model of familial hypercholesterolemia. APPROACH AND RESULTS: Gene targeting has been used to generate Yucatan miniature pigs heterozygous (LDLR+/-) or homozygous (LDLR-/-) for LDL receptor deficiency (ExeGen). LDLR+/- and LDLR-/- pigs were fed a high-fat, cholesterol-containing diet (34% kcal fat; 0.2% cholesterol) and orally administered placebo or BemA for 160 days. In LDLR+/- pigs, compared with placebo, BemA decreased plasma cholesterol and LDL-C up to 40% and 61%, respectively. In LDLR-/- pigs, in which plasma cholesterol and LDL-C were 5-fold higher than in LDLR+/- pigs, BemA decreased plasma cholesterol and LDL-C up to 27% and 29%, respectively. Plasma levels of triglycerides and high-density lipoprotein cholesterol, fasting glucose and insulin, and liver lipids were unaffected by treatment in either genotype. In the aorta of LDLR+/- pigs, BemA robustly attenuated en face raised lesion area (-58%) and left anterior descending coronary artery cross-sectional lesion area (-40%). In LDLR-/- pigs, in which lesions were substantially more advanced, BemA decreased aortic lesion area (-47%) and left anterior descending coronary artery lesion area (-48%). CONCLUSIONS: In a large animal model of LDLR deficiency and atherosclerosis, long-term treatment with BemA reduces LDL-C and attenuates the development of aortic and coronary atherosclerosis in both LDLR+/- and LDLR-/- miniature pigs.


Assuntos
Anticolesterolemiantes/farmacologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , LDL-Colesterol/sangue , Doença da Artéria Coronariana/prevenção & controle , Ácidos Dicarboxílicos/farmacologia , Ácidos Graxos/farmacologia , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Receptores de LDL/deficiência , Animais , Animais Geneticamente Modificados , Anticolesterolemiantes/farmacocinética , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Ácidos Dicarboxílicos/farmacocinética , Modelos Animais de Doenças , Regulação para Baixo , Ácidos Graxos/farmacocinética , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Masculino , Fenótipo , Placa Aterosclerótica , Receptores de LDL/genética , Suínos , Porco Miniatura
6.
Arterioscler Thromb Vasc Biol ; 37(4): 647-656, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28153881

RESUMO

OBJECTIVE: Bempedoic acid (ETC-1002, 8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel low-density lipoprotein cholesterol-lowering compound. In animals, bempedoic acid targets the liver where it inhibits cholesterol and fatty acid synthesis through inhibition of ATP-citrate lyase and through activation of AMP-activated protein kinase. In this study, we tested the hypothesis that bempedoic acid would prevent diet-induced metabolic dysregulation, inflammation, and atherosclerosis. APPROACH AND RESULTS: Ldlr-/- mice were fed a high-fat, high-cholesterol diet (42% kcal fat, 0.2% cholesterol) supplemented with bempedoic acid at 0, 3, 10 and 30 mg/kg body weight/day. Treatment for 12 weeks dose-dependently attenuated diet-induced hypercholesterolemia, hypertriglyceridemia, hyperglycemia, hyperinsulinemia, fatty liver and obesity. Compared to high-fat, high-cholesterol alone, the addition of bempedoic acid decreased plasma triglyceride (up to 64%) and cholesterol (up to 50%) concentrations, and improved glucose tolerance. Adiposity was significantly reduced with treatment. In liver, bempedoic acid prevented cholesterol and triglyceride accumulation, which was associated with increased fatty acid oxidation and reduced fatty acid synthesis. Hepatic gene expression analysis revealed that treatment significantly increased expression of genes involved in fatty acid oxidation while suppressing inflammatory gene expression. In full-length aorta, bempedoic acid markedly suppressed cholesteryl ester accumulation, attenuated the expression of proinflammatory M1 genes and attenuated the iNos/Arg1 ratio. Treatment robustly attenuated atherosclerotic lesion development in the aortic sinus by 44%, with beneficial changes in morphology, characteristic of earlier-stage lesions. CONCLUSIONS: Bempedoic acid effectively prevents plasma and tissue lipid elevations and attenuates the onset of inflammation, leading to the prevention of atherosclerotic lesion development in a mouse model of metabolic dysregulation.


Assuntos
ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Aterosclerose/prevenção & controle , Ácidos Dicarboxílicos/farmacologia , Dieta Hiperlipídica , Dislipidemias/prevenção & controle , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/farmacologia , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , Obesidade/prevenção & controle , Receptores de LDL/deficiência , ATP Citrato (pro-S)-Liase/metabolismo , Animais , Aterosclerose/sangue , Aterosclerose/enzimologia , Aterosclerose/genética , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Modelos Animais de Doenças , Dislipidemias/sangue , Dislipidemias/enzimologia , Dislipidemias/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Inflamação/sangue , Inflamação/enzimologia , Inflamação/genética , Mediadores da Inflamação/sangue , Insulina/sangue , Lipídeos/sangue , Fígado/enzimologia , Masculino , Camundongos Knockout , Obesidade/sangue , Obesidade/enzimologia , Obesidade/genética , Fenótipo , Receptores de LDL/genética , Fatores de Tempo
7.
Nat Commun ; 7: 13457, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892461

RESUMO

Despite widespread use of statins to reduce low-density lipoprotein cholesterol (LDL-C) and associated atherosclerotic cardiovascular risk, many patients do not achieve sufficient LDL-C lowering due to muscle-related side effects, indicating novel treatment strategies are required. Bempedoic acid (ETC-1002) is a small molecule intended to lower LDL-C in hypercholesterolemic patients, and has been previously shown to modulate both ATP-citrate lyase (ACL) and AMP-activated protein kinase (AMPK) activity in rodents. However, its mechanism for LDL-C lowering, efficacy in models of atherosclerosis and relevance in humans are unknown. Here we show that ETC-1002 is a prodrug that requires activation by very long-chain acyl-CoA synthetase-1 (ACSVL1) to modulate both targets, and that inhibition of ACL leads to LDL receptor upregulation, decreased LDL-C and attenuation of atherosclerosis, independently of AMPK. Furthermore, we demonstrate that the absence of ACSVL1 in skeletal muscle provides a mechanistic basis for ETC-1002 to potentially avoid the myotoxicity associated with statin therapy.


Assuntos
ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Aterosclerose/tratamento farmacológico , Aterosclerose/enzimologia , LDL-Colesterol/metabolismo , Ácidos Dicarboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/farmacologia , Fígado/enzimologia , ATP Citrato (pro-S)-Liase/metabolismo , Adenilato Quinase/metabolismo , Animais , Aterosclerose/patologia , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/metabolismo , Progressão da Doença , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Especificidade de Órgãos , Receptores de LDL/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
J Clin Lipidol ; 10(3): 556-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27206943

RESUMO

BACKGROUND: ETC-1002 is an oral, once-daily, first-in-class medication being developed to treat hypercholesterolemia. OBJECTIVES: To compare 2 doses of ETC-1002, alone or combined with ezetimibe 10 mg (EZE), vs EZE monotherapy for lowering low-density lipoprotein cholesterol (LDL-C). METHODS: This phase 2b, multicenter, double-blind trial-evaluated hypercholesterolemic patients (LDL-C, 130 to 220 mg/dL) with (n = 177) or without (n = 171) muscle-related intolerance to ≥2 statins; 1 at lowest approved dose. Subjects were randomized to 12-week treatment with ETC-1002 120 mg or ETC-1002 180 mg alone, EZE alone, ETC-1002 120 mg plus EZE, or ETC-1002 180 mg plus EZE. RESULTS: EZE alone lowered LDL-C by 21%, whereas ETC-1002 monotherapy with 120 mg or 180 mg reduced LDL-C by 27% (P = .0008 vs EZE) and 30% (P < .0001 vs EZE), respectively. The combination of ETC-1002, 120 mg or 180 mg plus EZE reduced LDL-C by 43% and 48%, respectively (both P < .0001 vs EZE). ETC-1002 alone or combined with EZE also reduced non-high-density lipoprotein cholesterol, total cholesterol, apolipoprotein B, LDL particle number, and high-sensitivity C-reactive protein compared with EZE alone. Across all treatment groups, statin-intolerant patients reported more muscle-related adverse events than did statin-tolerant patients. ETC-1002 was safe and well tolerated, and rates of muscle-related adverse events were similar in all treatment groups. CONCLUSIONS: In patients with and without statin intolerance, daily treatment with ETC-1002 120 mg and 180 mg alone or with EZE reduced LDL-C more than EZE alone and had a similar tolerability profile (NCT01941836).


Assuntos
LDL-Colesterol/sangue , Ezetimiba/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ezetimiba/uso terapêutico , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Masculino , Pessoa de Meia-Idade , Músculos/efeitos dos fármacos , Segurança , Adulto Jovem
9.
J Clin Lipidol ; 9(3): 295-304, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26073387

RESUMO

BACKGROUND: Once-daily, oral ETC-1002 reduces low-density lipoprotein cholesterol (LDL-C) and has beneficial effects on other cardiometabolic risk factors but has not been examined in statin intolerant patients. OBJECTIVES: To study the efficacy and safety of ETC-1002 (a novel LDL-C-lowering agent) in patients with hypercholesterolemia and a history of statin intolerance. METHODS: Patients intolerant to at least 1 statin were entered into this multicenter, double-blind, 8-week trial. Participants were required to have a history of muscle complaints that developed during statin treatment and resolved within 4 weeks of statin discontinuation. Patients (n = 56) were randomized in a 2:1 ratio to ETC-1002 60 mg daily or placebo. The ETC-1002 dose was increased at 2-week intervals to 120 mg, 180 mg, and 240 mg. The primary end point was the percentage change from baseline to week 8 in calculated LDL-C. RESULTS: ETC-1002 reduced LDL-C 28.7% more than placebo (95% confidence interval, -35.4 to -22.1; P < .0001). ETC-1002 significantly reduced non-high-density lipoprotein cholesterol, total cholesterol, apolipoprotein B, and high-sensitivity C-reactive protein. Triglycerides and high-density lipoprotein cholesterol did not change with ETC-1002 treatment. Sixty-two percent of patients receiving ETC-1002 and none in the placebo group achieved the 2004 National Cholesterol Education Program Adult Treatment Panel III LDL-C goal (P < .0001). Muscle-related adverse events occurred with similar frequency in the placebo and ETC-1002 treatment groups, causing no discontinuations in ETC-1002-treated patients. CONCLUSIONS: ETC-1002 appears to be effective at reducing LDL-C and was well tolerated in patients with statin-associated muscle complaints. Longer and larger studies are required to confirm the absence of muscle side effects.


Assuntos
Ácidos Dicarboxílicos/administração & dosagem , Ácidos Graxos/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Hipercolesterolemia/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , LDL-Colesterol/sangue , Método Duplo-Cego , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Hipercolesterolemia/sangue , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Triglicerídeos/sangue
10.
Curr Opin Lipidol ; 25(4): 309-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24978142

RESUMO

PURPOSE OF REVIEW: To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. RECENT FINDINGS: ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. SUMMARY: Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Anticolesterolemiantes/farmacologia , LDL-Colesterol/metabolismo , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Terapia de Alvo Molecular/métodos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Anticolesterolemiantes/uso terapêutico , Humanos , Hipercolesterolemia/enzimologia
11.
Arterioscler Thromb Vasc Biol ; 34(3): 676-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24385236

RESUMO

OBJECTIVE: 8-Hydroxy-2,2,14,14-tetramethylpentadecanedioic acid (ETC-1002) is a small molecule with a unique mechanism of action shown in nonclinical studies to modulate pathways of cholesterol, fatty acid, and carbohydrate metabolism. In previous phase 2 clinical trials, once daily oral treatment with ETC-1002 significantly reduced low-density lipoprotein-cholesterol in patients with hypercholesterolemia. In this trial, the lipid-lowering efficacy of ETC-1002 was evaluated in patients with type 2 diabetes mellitus and hypercholesterolemia. Additional cardiometabolic biomarkers, including glycemic measures, were also assessed. APPROACH AND RESULTS: A single-center, double-blind, placebo-controlled trial evaluated 60 patients with type 2 diabetes mellitus and elevated low-density lipoprotein-cholesterol. Patients discontinued all diabetes mellitus and lipid-regulating drugs and were randomized to receive ETC-1002 80 mg QD for 2 weeks followed by 120 mg QD for 2 weeks or placebo for 4 weeks. ETC-1002 lowered low-density lipoprotein-cholesterol levels by 43±2.6% (least squares mean±SE), compared with a reduction of 4±2.5% by placebo at day 29 (P<0.0001; primary end point). Non-high-density lipoprotein-cholesterol and total cholesterol were also significantly lowered by ETC-1002 compared with placebo (P<0.0001). High-sensitivity C-reactive protein was reduced by 41% (median) compared with a placebo reduction of 11% (P=0.0011). No clinically meaningful safety findings were observed. CONCLUSIONS: ETC-1002 lowered low-density lipoprotein-cholesterol and other lipids and demonstrated improvement in high-sensitivity C-reactive protein in patients with type 2 diabetes mellitus and hypercholesterolemia without worsening glycemic control. ETC-1002 was well tolerated in this population. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT# 01607294.


Assuntos
Anticolesterolemiantes/uso terapêutico , LDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/complicações , Ácidos Dicarboxílicos/uso terapêutico , Ácidos Graxos/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Idoso , Anticolesterolemiantes/efeitos adversos , Anti-Hipertensivos/uso terapêutico , Glicemia/análise , Pressão Sanguínea , Proteína C-Reativa/análise , HDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Dicarboxílicos/efeitos adversos , Método Duplo-Cego , Jejum/sangue , Ácidos Graxos/efeitos adversos , Feminino , Humanos , Hipercolesterolemia/complicações , Hipertensão/sangue , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Triglicerídeos/sangue
12.
J Am Coll Cardiol ; 62(13): 1154-62, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23770179

RESUMO

OBJECTIVES: The aim of this study was to assess the lipid-altering efficacy and safety of ETC-1002 in subjects with hypercholesterolemia. BACKGROUND: ETC-1002 is a small molecule that modulates pathways of cholesterol, fatty acid, and carbohydrate metabolism and may have therapeutic benefits in treating hypercholesterolemia and other cardiometabolic risk factors. METHODS: This multicenter, randomized, double-blind, placebo-controlled, parallel-group trial evaluated patients (n = 177) with elevated low-density lipoprotein cholesterol (LDL-C) (130 to 220 mg/dl), who were stratified by baseline triglycerides (not elevated [<150 mg/dl] or elevated [150-<400 mg/dl]) and randomized to receive 40, 80, or 120 mg of ETC-1002 or placebo once daily for 12 weeks. Outcomes included changes in LDL-C (primary endpoint), other lipids, and cardiometabolic risk factors; and safety. RESULTS: ETC-1002 40, 80, and 120 mg lowered least-squares mean ± SE LDL-C levels by 17.9 ± 2.2%, 25.0 ± 2.1%, and 26.6 ± 2.2%, respectively, versus a reduction of 2.1 ± 2.2% with placebo (all, p < 0.0001); LDL-C lowering was similar between the subgroups with nonelevated and elevated triglycerides. ETC-1002 also lowered non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B, and LDL particle number (all, p < 0.0001) in a dose-dependent manner; HDL-C and triglyceride levels were relatively unchanged. Post-hoc analyses suggest that ETC-1002 may have favorable effects on other cardiometabolic risk factors. The ETC-1002 and placebo groups did not demonstrate clinically meaningful differences in adverse events or other safety assessments. CONCLUSIONS: ETC-1002 significantly lowered LDL-C levels up to 27% across a broad range of baseline triglycerides and was generally safe and well tolerated. ETC-1002 has a novel mechanism of action and may be useful for reducing LDL-C. (A Study to Assess the Efficacy and Safety of ETC-1002 in Subjects With Elevated Blood Cholesterol and Either Normal or Elevated Triglycerides; NCT01262638).


Assuntos
Ácidos Dicarboxílicos/administração & dosagem , Ácidos Graxos/administração & dosagem , Hipercolesterolemia/tratamento farmacológico , Hipolipemiantes/administração & dosagem , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Idoso , Ácidos Dicarboxílicos/efeitos adversos , Método Duplo-Cego , Ácidos Graxos/efeitos adversos , Feminino , Humanos , Hipolipemiantes/efeitos adversos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
13.
J Lipid Res ; 54(8): 2095-2108, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23709692

RESUMO

ETC-1002 is an investigational drug currently in Phase 2 development for treatment of dyslipidemia and other cardiometabolic risk factors. In dyslipidemic subjects, ETC-1002 not only reduces plasma LDL cholesterol but also significantly attenuates levels of hsCRP, a clinical biomarker of inflammation. Anti-inflammatory properties of ETC-1002 were further investigated in primary human monocyte-derived macrophages and in in vivo models of inflammation. In cells treated with ETC-1002, increased levels of AMP-activated protein kinase (AMPK) phosphorylation coincided with reduced activity of MAP kinases and decreased production of proinflammatory cytokines and chemokines. AMPK phosphorylation and inhibitory effects of ETC-1002 on soluble mediators of inflammation were significantly abrogated by siRNA-mediated silencing of macrophage liver kinase B1 (LKB1), indicating that ETC-1002 activates AMPK and exerts its anti-inflammatory effects via an LKB1-dependent mechanism. In vivo, ETC-1002 suppressed thioglycollate-induced homing of leukocytes into mouse peritoneal cavity. Similarly, in a mouse model of diet-induced obesity, ETC-1002 restored adipose AMPK activity, reduced JNK phosphorylation, and diminished expression of macrophage-specific marker 4F/80. These data were consistent with decreased epididymal fat-pad mass and interleukin (IL)-6 release by inflamed adipose tissue. Thus, ETC-1002 may provide further clinical benefits for patients with cardiometabolic risk factors by reducing systemic inflammation linked to insulin resistance and vascular complications of metabolic syndrome.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Dicarboxílicos/farmacologia , Ácidos Graxos/farmacologia , Leucócitos/efeitos dos fármacos , Macrófagos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Animais , Relação Dose-Resposta a Droga , Humanos , Inflamação , Leucócitos/citologia , Leucócitos/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
14.
J Lipid Res ; 54(1): 134-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23118444

RESUMO

ETC-1002 (8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel investigational drug being developed for the treatment of dyslipidemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid ß-oxidation. However, the molecular mechanism(s) mediating these activities remained undefined. Studies described here show that ETC-1002 free acid activates AMP-activated protein kinase in a Ca(2+)/calmodulin-dependent kinase ß-independent and liver kinase ß 1-dependent manner, without detectable changes in adenylate energy charge. Furthermore, ETC-1002 is shown to rapidly form a CoA thioester in liver, which directly inhibits ATP-citrate lyase. These distinct molecular mechanisms are complementary in their beneficial effects on lipid and carbohydrate metabolism in vitro and in vivo. Consistent with these mechanisms, ETC-1002 treatment reduced circulating proatherogenic lipoproteins, hepatic lipids, and body weight in a hamster model of hyperlipidemia, and it reduced body weight and improved glycemic control in a mouse model of diet-induced obesity. ETC-1002 offers promise as a novel therapeutic approach to improve multiple risk factors associated with metabolic syndrome and benefit patients with cardiovascular disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Ácidos Dicarboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Quinases Proteína-Quinases Ativadas por AMP , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Cálcio/metabolismo , Cricetinae , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/uso terapêutico , Dieta/efeitos adversos , Dislipidemias/sangue , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Ácidos Graxos/uso terapêutico , Feminino , Glucagon/metabolismo , Glucose/biossíntese , Células Hep G2 , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Esteróis/biossíntese
15.
J Lipid Res ; 53(12): 2490-514, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22798688

RESUMO

The adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism at the cellular as well as whole-body level. It is activated by low energy status that triggers a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways. AMPK is involved in a wide range of biological activities that normalizes lipid, glucose, and energy imbalances. These pathways are dysregulated in patients with metabolic syndrome (MetS), which represents a clustering of major cardiovascular risk factors including diabetes, lipid abnormalities, and energy imbalances. Clearly, there is an unmet medical need to find a molecule to treat alarming number of patients with MetS. AMPK, with multifaceted activities in various tissues, has emerged as an attractive drug target to manage lipid and glucose abnormalities and maintain energy homeostasis. A number of AMPK activators have been tested in preclinical models, but many of them have yet to reach to the clinic. This review focuses on the structure-function and role of AMPK in lipid, carbohydrate, and energy metabolism. The mode of action of AMPK activators, mechanism of anti-inflammatory activities, and preclinical and clinical findings as well as future prospects of AMPK as a drug target in treating cardio-metabolic disease are discussed.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Carboidratos , Doenças Cardiovasculares/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/química , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/metabolismo , Ativadores de Enzimas/administração & dosagem , Humanos
16.
Biochim Biophys Acta ; 1811(2): 76-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21081177

RESUMO

Fenofibrate, a PPAR-α agonist, lowers triglycerides (TG) and raises high-density lipoproteins (HDL-C) in humans. While fenofibrate is very effective in lowering TG, it does not raise HDL-C in humans to the same extent as seen in human apoAI transgenic (hAI-Tg) mice. We studied the mechanism of this discordance using the following compounds as tools: cholic acid that down-regulates human apoAI, and fenofibrate, that elevates hapoAI and HDL-C in hAI-Tg mice. We hypothesized that additional sequences, including apoCIII and AIV genes on chromosome 11, not present in the hapoAI transgene may be responsible for the dampened effect of fibrates on HDL-C seen in humans. For this, hAI-Tg mice with 11kb DNA segment and hapoAI-CIII-AIV-Tg mice with 33kb DNA segment harboring apoCIII and AIV genes were employed. These mice were treated with fenofibrate and cholic acid. Fenofibrate increased apoAI and HDL-C levels, and HDL size in the apoAI-Tg mice via up-regulation of the hapoAI mRNA and increased activity and mRNA of PLTP, respectively. Consistent with earlier findings, cholic acid showed similar effects of lowering HDL-C, and elevating LDL-C in hAI-Tg mice as well as in the hAI-CIII-AIV-Tg mice. Fenofibrate decreased TG and increased HDL size in hAI-CIII-AIV-Tg mice as well, but surprisingly, did not elevate serum levels of hapoAI or hepatic AI mRNA, suggesting that additional sequences not present in the hapoAI transgene (11kb) may be partly responsible for the dampened effect on HDL-C seen in hAI-CIII-AIV-Tg mice. Since hAI-CIII-AIV-Tg mouse mimics fenofibrate effects seen in humans, this transgenic mouse could serve as a better predictive model for screening HDL-C raising compounds.


Assuntos
Apolipoproteína A-I/sangue , Fenofibrato/metabolismo , Hipolipemiantes/metabolismo , Lipoproteínas HDL/sangue , Animais , Apolipoproteína A-I/genética , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ácido Cólico/metabolismo , Humanos , Lipoproteínas HDL/genética , Camundongos , Camundongos Transgênicos , Triglicerídeos/sangue
17.
J Am Coll Cardiol ; 51(11): 1098-103, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18342229

RESUMO

OBJECTIVES: This study sought to evaluate in vivo the minimal dose of apolipoprotein (apo) A-I(Milano) phospholipid complex (recombinant apoA-I(Milano) and 1-palmitoyl-2-oleoyl phosphatidylcholine complexes [ETC-216]) able to induce atherosclerosis regression in a rabbit model of lipid-rich plaques. BACKGROUND: A single high dose of recombinant apoA-I(Milano) has promoted atherosclerosis regression in animal models. More recently, regression of atherosclerosis was achieved in coronary patients by repeated infusions of ETC-216. METHODS: Thirty-six rabbits underwent perivascular injury at both carotid arteries, followed by a 1.5% cholesterol diet. After 90 days, rabbits were randomly divided into 6 groups and treated 5 times with vehicle or ETC-216 at 5, 10, 20, 40, or 150 mg/kg dose every 4 days. Carotid plaque changes were evaluated in vivo by intravascular ultrasound (IVUS) and magnetic resonance imaging (MRI), performed before and at the end of treatments. Magnetic resonance imaging scans were also recorded after administration of the second dose for rabbits infused with vehicle 40 or 150 mg/kg. RESULTS: Atheroma volume in vehicle-treated rabbits increased dramatically between the first and the second IVUS analyses (+26.53%), whereas in ETC-216-treated animals, a reduced progression at the lower doses and a significant regression at the higher doses, up to -6.83%, was detected. Results obtained by MRI analysis correlated significantly with those at IVUS (r = 0.706; p < 0.0001). The MRI evaluations after the second infusion established that a significant regression was achieved with only 2 administrations of the highest dose. CONCLUSIONS: These results confirm the efficacy of ETC-216 for atherosclerosis treatment and provide guidance for dose selection and frequency to obtain a significant reduction of plaque volume.


Assuntos
Anticolesterolemiantes/administração & dosagem , Apolipoproteína A-I/administração & dosagem , Aterosclerose/diagnóstico , Aterosclerose/tratamento farmacológico , Artéria Carótida Primitiva/efeitos dos fármacos , Estenose das Carótidas/tratamento farmacológico , Fosfatidilcolinas/administração & dosagem , Animais , Estenose das Carótidas/diagnóstico , HDL-Colesterol/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Imageamento por Ressonância Magnética , Masculino , Coelhos , Distribuição Aleatória , Ultrassonografia
19.
Circ Res ; 90(9): 974-80, 2002 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-12016263

RESUMO

Apolipoprotein A-I(Milano) (AIM), a natural variant of human apolipoprotein A-I, confers to carriers a significant protection against vascular disease. In previous studies, administration of recombinant AIM-phospholipid (AIM-PL) complexes to hypercholesterolemic rabbits markedly inhibited neointimal formation after arterial injury; moreover, repeated injections of AIM-PL in apoE-deficient mice significantly reduced atherosclerosis progression. The objective of the present study was to determine if a single localized infusion of AIM-PL complexes administered directly to atheromatous lesions could promote plaque regression. Lipid-rich, atheromatous plaques were generated at both common carotid arteries of 25 rabbits by applying a perivascular electric injury, followed by 1.5% cholesterol diet for 90 days. Rabbits were infused with either saline, phospholipid vesicles, or 3 different AIM-PL doses (250, 500, or 1000 mg of protein) delivered through an intravascular ultrasound (IVUS) catheter positioned at the origin of the right carotid. The lesions at the left carotid artery were therefore exposed to the agents systemically. Infusion of AIM-PL at the 2 highest doses caused reduction of right carotid artery plaque area by the end a 90-minute infusion as assessed by IVUS analysis. Plaque area regression was confirmed by histology in carotid arteries receiving direct (500 and 1000 mg doses) and systemic (500 mg dose) delivery, 72 hours after the start of the treatment. Plaque lipid content was associated with significant and similar decreases in Oil Red O staining in both arteries. These results suggest AIM-PL complexes enhanced lipid removal from arteries is the mechanism responsible for the observed plaque changes.


Assuntos
Apolipoproteína A-I/farmacologia , Arteriosclerose/tratamento farmacológico , Artérias Carótidas/efeitos dos fármacos , Animais , Arteriosclerose/sangue , Arteriosclerose/patologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , HDL-Colesterol/sangue , Infusões Intra-Arteriais , Lipídeos/sangue , Lipoproteínas/sangue , Masculino , Coelhos , Proteínas Recombinantes/farmacologia , Resultado do Tratamento , Ultrassonografia de Intervenção
20.
Atheroscler Suppl ; 3(4): 31-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12573361

RESUMO

Although pharmacologic intervention to treat atherosclerosis originally focused on lowering LDL-cholesterol levels as a therapeutic target, a number of intervention trials have also highlighted the powerful effect of elevating HDL-cholesterol levels to reduce cardiovascular morbidity and mortality. Although the mechanism(s) by which HDL beneficially alters the atherosclerotic disease process is (are) still unknown, it is presumed that high levels of HDL facilitate the efflux of cholesterol from the arterial wall, thereby enhancing the transport of cholesterol and other lipids from arteries back to the liver for biliary excretion as fecal sterols and bile acids. It has therefore been hypothesized that through a rapid facilitation of HDL mediated cholesterol efflux from arteries by infusion of synthetic apolipoprotein A-I (apoA-I)/phospholipid (A-I/PL) complexes, HDL therapy could have an acute therapeutic application to treat cardiovascular disease at the site of action, namely the vulnerable, unstable atherosclerotic plaque. Single high dose infusions and repeated injections of lower doses of apoA-I variants or mimetics complexed to phospholipids have produced remarkable effects on the progression and regression of atherosclerosis in animal models. The positive results of these preclinical experiments have compelled researchers to perform exploratory studies in human subjects in which reconstituted HDL and synthetic A-I/PL complexes are infused through a peripheral vein. These clinical studies are testing the hypothesis and the potential use of synthetic HDL as a new treatment modality for acute coronary syndromes. Given that there is an unmet medical need for new and more effective therapies to elevate HDL-cholesterol levels and improve HDL function, a historical review, update and discussion of the preclinical and clinical studies which support the use of HDL therapy for reducing cardiovascular morbidity and mortality is warranted.


Assuntos
Arteriosclerose/tratamento farmacológico , Arteriosclerose/fisiopatologia , Lipoproteínas HDL/fisiologia , Lipoproteínas HDL/uso terapêutico , Animais , Apolipoproteína A-I/fisiologia , Apolipoproteína A-I/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...