Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(30): 11509-11513, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35856737

RESUMO

CO-bound forms of nitrogenase are N2-reduction inhibited and likely intermediates in Fischer-Tropsch chemistry. Visible-light photolysis at 7 K was used to interrogate all three known CO-related EPR-active forms as exhibited by the α-H195Q variant of Azotobacter vinelandii nitrogenase MoFe protein. The hi(5)-CO EPR signal converted to the hi-CO EPR signal, which reverted at 10 K. FT-IR monitoring revealed an exquisitely light-sensitive "Hi-2" species with bands at 1932 and 1866 cm-1 that yielded "Hi-1" with bands at 1969 and 1692 cm-1, which reverted to "Hi-2". The similarities of photochemical behavior and recombination kinetics showed, for the first time, that hi-CO EPR and "Hi-1" IR signals arise from one chemical species. hi(5)-CO EPR and "Hi-2" IR signals are from a second species, and lo-CO EPR and "Lo-2" IR signals, formed after prolonged illumination, are from a third species. Comparing FT-IR data with CO-inhibited MoFe-protein crystal structures allowed assignment of CO-bonding geometries in these species.


Assuntos
Azotobacter vinelandii , Nitrogenase , Monóxido de Carbono , Espectroscopia de Ressonância de Spin Eletrônica , Molibdoferredoxina/metabolismo , Nitrogenase/química , Recombinação Genética , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Inorg Biochem ; 232: 111806, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35439691

RESUMO

The nitrogenase (N2ase) enzyme family is responsible for the conversion of dinitrogen into biologically accessible ammonia, a critical step in the global nitrogen cycle. Carbon monoxide (CO) has long been known as an inhibitor of dinitrogen reduction, but it can also be reduced to hydrocarbons catalyzed by all three N2ases, namely the wild-type Mo enzyme and select variants and the V and Fe nitrogenases, both of which are orders of magnitude more effective. CO interactions with N2ases are thus relevant to both dinitrogen fixation and Fischer-Tropsch-like chemistry. Here, we investigated the interaction of CO with the α-R277H variant of the Azotobacter vinelandii N2ase MoFe protein, in which the α-subunit 277Arg residue is replaced by His and results in production of only the S = 3/2 EPR signal (denoted as hi(5)-CO). Fourier-transform infrared (FT-IR) spectroscopy was used to follow the photolysis of CO bound to the α-R277H variant under cryogenic conditions. Multiple EPR-silent species were observed with FT-IR spectroscopic signatures previously assigned to CO-inhibited forms of the α-H195Q and α-H195N N2ase variants. The distribution of these CO-inhibited forms varied dramatically with pH over the range of pH 6.5 to pH 8.5, indicating protonation/deprotonation involvement.


Assuntos
Azotobacter vinelandii , Nitrogenase , Azotobacter vinelandii/metabolismo , Monóxido de Carbono/química , Concentração de Íons de Hidrogênio , Molibdoferredoxina/química , Nitrogenase/química , Oxirredução , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Commun Chem ; 32020.
Artigo em Inglês | MEDLINE | ID: mdl-34337161

RESUMO

Protonation of FeMo-cofactor is important for the process of substrate hydrogenation. Its structure has been clarified as Δ-Mo*Fe7S9C(R-homocit*)(cys)(Hhis) for the efforts of nearly 30 years, while it remains controversial whether FeMo-cofactor is protonated or deprotonated with chelated ≡C-O(H) homocitrate. We have used protonated molybdenum(V) lactates 1 and its enantiomer as model compounds for R-homocitrate in FeMo-cofactor of nitrogenase. Vibrational circular dichroism (VCD) spectrum of 1 at 1051 cm-1 is attributed to ≡C-OH vibration, and molybdenum(VI) R-lactate at 1086 cm-1 is assigned as ≡C-O α-alkoxy vibration. These vibrations set up labels for the protonation state of coordinated α-hydroxycarboxylates. The characteristic VCD band of NMF-extracted FeMo-cofactor is assigned to ν(C-OH), which is based on the comparison of molybdenum(VI) R-homocitrate. Density Functional Theory calculations are in consistent with these assignments. To the best of our knowledge, this is the first time that protonated R-homocitrate in FeMo-cofactor is confirmed by VCD spectra.

4.
Inorg Chem ; 58(4): 2523-2532, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30726074

RESUMO

A similar pair of protonated and deprotonated mononuclear oxidovanadium glycolates [VO(Hglyc)(phen)(H2O)]Cl·2H2O (1) and [VO(glyc)(bpy)(H2O)] (2) and a mixed-(de)protonated oxidovanadium triglycolate (NH4)2[VO(Hglyc)2(glyc)]·H2O (3) were isolated and examined. The ≡C-O(H) (≡C-OH or ≡C-O) groups coordinated to vanadium were spectroscopically and structurally identified. The glycolate in 1 features a bidentate chelation through protonated α-hydroxy and α-carboxy groups, whereas the glycolate in 2 coordinates through deprotonated α-alkoxy and α-carboxy groups. The glycolates in 3 coordinate to vanadium through α-alkoxy or α-hydroxy and α-carboxy groups and thus have both protonated ≡C-OH and deprotonated ≡C-O bonds simultaneously. Structural investigations revealed that the longer protonated V-Oα-hydroxy bonds [2.234(2) Å and 2.244(2) Å] in 1 and 3 are close to those of FeV-cofactor (FeV-co) 2.17 Å1 (FeMo-co 2.17 Å2), while deprotonated V-Oα-alkoxy bonds [2, 1.930(2); 3, 1.927(2) Å] were obviously shorter. This shows a similar elongated trend as the Mo-O distances in the previously reported deprotonated vs protonated molybdenum lactates (Wang, S. Y. et al. Dalton Trans. 2018, 47, 7412-7421) and these vanadium and molybdenum complexes have the same local V/Mo-homocitrate structures as those of FeV/Mo-cos of nitrogenases. The IR spectra of these oxidovanadium and the previously synthesized molybdenum complexes including different substituted ≡C-O(H) model compounds show red-shifts for ≡C-OH vs ≡C-O alternation, which further assign the two IR bands of extracted FeMo-co at 1084 and 1031 cm-1 to ≡C-O and ≡C-OH vibrations, respectively. Although the structural data or IR spectra for some of the previously synthesized Mo/V complexes and extracted FeMo-co were measured earlier, this is the first time that the ≡C-O(H) coordinated peaks are assigned. The overall structural and IR results well suggest the coexistence of homocitrates coordinated with α-alkoxy (deprotonated) and α-hydroxy (protonated) groups in the extracted FeMo-co.

5.
Inorganica Chim Acta ; 453: 74-77, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31662586

RESUMO

H2-evolution assays, plus EPR and FTIR spectroscopies, using CO-inhibited Azotobacter vinelandii Mo-nitrogenase have shown that the disaccharide trehalose is an effective quenching agent of enzymatic turnover and also stabilizes the reaction intermediates formed. Complete inhibition of H2-evolution activity was achieved at 1.5 M trehalose, which compares favorably to the requirement for 10 M ethylene glycol to achieve similar inhibition. Reaction-intermediate stabilization was demonstrated by monitoring the EPR spectrum of the 'hi-CO' form of CO-inhibited N2ase, which did not change during 1 hr after trehalose quenching. Similarly, in situ photolysis with FTIR monitoring of 'hi-CO' resulted in the same 1973 and 1681 cm-1 signals as observed previously in ethylene glycol-quenched systems. [a] These results clearly show that 1.5 M trehalose is an effective quench and stabilization agent for Mo-N2ase studies. Possible applications are discussed.

6.
J Inorg Biochem ; 153: 128-135, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26343576

RESUMO

We have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~1.2ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~84, 116, 189, and 226cm(-1). Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226cm(-1) band is assigned as a potential 'promoting vibration' in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group.


Assuntos
Azotobacter vinelandii/metabolismo , Molibdoferredoxina/química , Biocatálise , Modelos Químicos , Análise Espectral , Temperatura , Vibração
7.
J Am Chem Soc ; 136(45): 15942-54, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25275608

RESUMO

The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm(-1) mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N2ase variant. In the frequency region above 450 cm(-1), additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by (13)CO isotope shifts). The EXAFS for wild-type N2ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal -CO and a partially reduced -CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational "shake" modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. Implications for the CO and N2 reactivity of N2ase are discussed.


Assuntos
Monóxido de Carbono/química , Monóxido de Carbono/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Nitrogenase/antagonistas & inibidores , Nitrogenase/metabolismo , Teoria Quântica , Azotobacter vinelandii/enzimologia , Monóxido de Carbono/metabolismo , Inibidores Enzimáticos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Molibdoferredoxina/metabolismo , Mutação , Nitrogenase/química , Nitrogenase/genética , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
8.
Biochemistry ; 53(39): 6151-60, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25203280

RESUMO

A likely entry/exit path for nitrogenase substrates, products, and/or protons involves residues α277(Arg), α192(Ser), and α356(Gly), all of which are highly conserved among MoFe proteins from different organisms. The α192(Ser) and α277(Arg) residues form part of a hydrogen-bonded network that also involves α195(His), which interacts with a FeMo cofactor-based sulfide. The terminal amino groups of α277(Arg) are also hydrogen-bonded directly to α281(Tyr), which resides at the surface of the MoFe protein. Individual amino acid substitutions placed at position α277 or α192 resulted in a variety of effects on the catalytic and/or spectroscopic properties of the resulting variant MoFe protein. Of particular interest was the effect of CO on H2 evolution catalyzed by three MoFe protein variants, α277(Cys), α192(Asp), and α192(Glu). All three variants exhibited CO stimulation of H2 evolution under high-electron flux conditions but not under low-electron flux conditions. This observation is best explained by these variants being redox-compromised but only at the most reduced redox states of the MoFe protein. Normally, these states are accessed and operational only under high-electron flux conditions, and the effect of added CO is to prevent access to these most reduced redox states, resulting in a normal rate of catalysis. Furthermore, via correlation of the effect of pH changes on H2 evolution activity for both the wild type and the α277(Cys) MoFe protein variant under argon, with or without 10% CO present, likely pathways for the delivery of a proton to the FeMo cofactor were identified.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Nitrogenase/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Molibdoferredoxina/química , Molibdoferredoxina/genética , Molibdoferredoxina/metabolismo , Mutação de Sentido Incorreto , Nitrogenase/química , Nitrogenase/genética , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Prótons , Temperatura
9.
Chemistry ; 18(51): 16349-57, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23136072

RESUMO

Fourier transform infrared spectroscopy (FTIR) was used to observe the photolysis and recombination of a new EPR-silent CO-inhibited form of α-H195Q nitrogenase from Azotobacter vinelandii. Photolysis at 4 K reveals a strong negative IR difference band at nu = 1938 cm(-1), along with a weaker negative feature at 1911 cm(-1). These bands and the associated chemical species have both been assigned the label "Hi-3". A positive band at nu = 1921 cm(-1) was assigned to the "Lo-3" photoproduct. By using an isotopic mixture of (12)C (16)O and (13)C (18)O, we show that the Hi-3 bands arise from coupling of two similar CO oscillators with one uncoupled frequency at approximately nu = 1917 cm(-1). Although in previous studies Lo-3 was not observed to recombine, by extending the observation range to 200-240 K, we found that recombination to Hi-3 does indeed occur, with an activation energy of approximately 6.5 kJ mol(-1). The frequencies of the Hi-3 bands suggest terminal CO ligation. This hypothesis was tested with DFT calculations on models with terminal CO ligands on Fe2 and Fe6 of the FeMo-cofactor. An S = 0 model with both CO ligands in exo positions predicts symmetric and asymmetric stretches at nu = 1938 and 1909 cm(-1), respectively, with relative band intensities of about 3.5:1, which is in good agreement with experiment. From the observed IR intensities, Hi-3 was found to be present at a concentration about equal to that of the EPR-active Hi-1 species. The relevance of Hi-3 to the nitrogenase catalytic mechanism and its recently discovered Fischer-Tropsch chemistry is discussed.


Assuntos
Azotobacter vinelandii/química , Monóxido de Carbono/química , Molibdoferredoxina/química , Nitrogenase/química , Catálise , Estabilidade Enzimática , Ligantes , Fotólise , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Methods Mol Biol ; 766: 105-27, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21833864

RESUMO

Steady-state assays of nitrogenases share at least five requirements: an anaerobic environment, a consistent source of magnesium adenosine triphosphate (MgATP), a suitable source of reductant, a buffer system compatible with the product-quantification protocol to be used, and the desired substrate. The assay is initiated by injection of the component protein(s) of the enzyme or MgATP and terminated by injection of either acid or a solution of Na(2)EDTA. The various nitrogenases catalyze the reduction of a wide variety of substrates. This chapter outlines the methods used to analyze the products of nitrogenase-catalyzed reactions involving nitrogen-nitrogen bonds, nitrogen-oxygen bonds, carbon-nitrogen bonds, carbon-carbon bonds, carbon-oxygen bonds, carbon-sulfur bonds, and hydrogen only. The usefulness of measurements of residual amounts of other components of nitrogenase assays is also discussed.


Assuntos
Ensaios Enzimáticos/métodos , Nitrogenase/metabolismo , Trifosfato de Adenosina/metabolismo
11.
Eur J Inorg Chem ; 2011(13): 2064-2074, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-27630531

RESUMO

Fourier transform infrared spectroscopy (FT-IR) was used to study the photochemistry of CO-inhibited Azotobacter vinelandii nitrogenase using visible light at cryogenic temperatures. The FT-IR difference spectrum of photolyzed hi-CO at 4 K comprises negative bands at 1973 cm-1 and 1679 cm-1 together with positive bands at 1711 cm-1, 2135 and 2123 cm-1. The negative bands are assigned to a hi-CO state that comprises 2 metal-bound CO ligands, one terminally bound, and one bridged and/or protonated species. The positive band at 1711 cm-1 is assigned to a lo-CO product with a single bridged and/or protonated metal-CO group. We term these species 'Hi-1' and 'Lo-1' respectively. The high-energy bands are assigned to a liberated CO trapped in the protein pocket. Warming results in CO recombination, and the temperature dependence of the recombination rate yields an activation energy of 4 kJ mol-1. Two α-H195 variant enzymes yielded additional signals. Asparagine substitution, α-H195N, gives a spectrum containing 2 negative 'Hi-2' bands at 1936 and 1858 cm-1 with a positive 'Lo-2' band at 1780 cm-1, while glutamine substitution, α-H195Q, produces a complex spectrum that includes a third CO species, with negative 'Hi-3' bands at 1938 and 1911 cm-1 and a positive feature 'Lo-3' band at 1921 cm-1. These species can be assigned to a combination of terminal, bridged, and possibly protonated CO groups bound to the FeMo-cofactor active site. The proposed structures are discussed in terms of both CO inhibition and the mechanism nitrogenase catalysis. Given the intractability of observing nitrogenase intermediates by crystallographic methods, IR-monitored photolysis appears to be a promising and information-rich probe of nitrogenase structure and chemistry.

12.
Microbiol Mol Biol Rev ; 74(4): 529-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21119016

RESUMO

This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N(2) fixation and/or H(2) formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H(2) as a source of combustible energy. To enhance the rates of H(2) production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H(2) formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy.


Assuntos
Cianobactérias/enzimologia , Hidrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Biocombustíveis , Cianobactérias/genética , Hidrogenase/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo
14.
J Inorg Biochem ; 101(11-12): 1649-56, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17845818

RESUMO

Various S=3/2 EPR signals elicited from wild-type and variant Azotobacter vinelandii nitrogenase MoFe proteins appear to reflect different conformations assumed by the FeMo-cofactor with different protonation states. To determine whether these presumed changes in protonation and conformation reflect catalytic capacity, the responses (particularly to changes in electron flux) of the alphaH195Q, alphaH195N, and alphaQ191K variant MoFe proteins (where His at position 195 in the alpha subunit is replaced by Gln/Asn or Gln at position alpha-191 by Lys), which have strikingly different substrate-reduction properties, were studied by stopped-flow or rapid-freeze techniques. Rapid-freeze EPR at low electron flux (at 3-fold molar excess of wild-type Fe protein) elicited two transient FeMo-cofactor-based EPR signals within 1 s of initiating turnover under N(2) with the alphaH195Q and alphaH195N variants, but not with the alphaQ191K variant. No EPR signals attributable to P cluster oxidation were observed for any of the variants under these conditions. Furthermore, during turnover at low electron flux with the wild-type, alphaH195Q or alphaH195N MoFe protein, the longer-time 430-nm absorbance increase, which likely reflects P cluster oxidation, was also not observed (by stopped-flow spectrophotometry); it did, however, occur for all three MoFe proteins under higher electron flux. No 430-nm absorbance increase occurred with the alphaQ191K variant, not even at higher electron flux. This putative lack of involvement of the P cluster in electron transfer at low electron flux was confirmed by rapid-freeze (57)Fe Mössbauer spectroscopy, which clearly showed FeMo-factor reduction without P cluster oxidation. Because the wild-type, alphaH195Q and alphaH195N MoFe proteins can bind N(2), but alphaQ195K cannot, these results suggest that P cluster oxidation occurs only under high electron flux as required for N(2) reduction.


Assuntos
Azotobacter vinelandii/metabolismo , Molibdoferredoxina/química , Nitrogenase/química , Nitrogenase/metabolismo , Azotobacter vinelandii/crescimento & desenvolvimento , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Molibdoferredoxina/metabolismo , Fixação de Nitrogênio
15.
J Am Chem Soc ; 128(23): 7608-12, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16756317

RESUMO

Nitrogenase catalyzes a reaction critical for life, the reduction of N(2) to 2NH(3), yet we still know relatively little about its catalytic mechanism. We have used the synchrotron technique of (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the dynamics of the Fe-S clusters in this enzyme. The catalytic site FeMo-cofactor exhibits a strong signal near 190 cm(-)(1), where conventional Fe-S clusters have weak NRVS. This intensity is ascribed to cluster breathing modes whose frequency is raised by an interstitial atom. A variety of Fe-S stretching modes are also observed between 250 and 400 cm(-)(1). This work is the first spectroscopic information about the vibrational modes of the intact nitrogenase FeMo-cofactor and P-cluster.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Molibdoferredoxina/química , Nitrogenase/química , Algoritmos , Amônia/química , Catálise , Compostos de Ferro/química , Modelos Moleculares , Nitrogênio/química , Compostos de Enxofre/química , Termodinâmica , Vibração
16.
Biochemistry ; 45(13): 4190-8, 2006 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-16566593

RESUMO

The Mo-nitrogenase-catalyzed reduction of both cyanide and azide results in the production of excess NH3, which is an amount of NH3 over and above that expected to be formed from the well-recognized reactions. Several suggestions about the possible sources of excess NH3 have been made, but previous attempts to characterize these reactions have met with either limited (or no) success or controversy. Because V-nitrogenase has a propensity to release partially reduced intermediates, e.g., N2H4 during N2 reduction, it was selected to probe the reduction of cyanide and azide. Sensitive assay procedures were developed and employed to monitor the production of either HCHO or CH3OH (its further two-electron-reduced product) from HCN. Like Mo-nitrogenase, V-nitrogenase suffered electron-flux inhibition by CN- (but was much less sensitive than Mo-nitrogenase), but unlike the case for Mo-nitrogenase, MgATP hydrolysis was also inhibited by CN-. V-Nitrogenase also released more of the four-electron-reduced intermediate, CH3NH2, than did Mo-nitrogenase. At high NaCN concentrations, V-nitrogenase directed a significant percentage of electron flux into excess NH3, and under these conditions, substantial amounts of HCHO, but no CH3OH, were detected for the first time. With azide, in contrast to the case for Mo-nitrogenase, both total electron flux and MgATP hydrolysis with V-nitrogenase were inhibited. V-Nitrogenase, unlike Mo-nitrogenase, showed no preference between the two-electron reduction to N2-plus-NH3 and the six-electron reduction to N2H4-plus-NH3. V-Nitrogenase formed more excess NH3, but reduction of the N2 produced by the two-electron reduction of N3(-) was not its source. Rather, it was formed directly by the eight-electron reduction of N3(-). Unlike Mo-nitrogenase, CO could not completely eliminate either cyanide or azide reduction by V-nitrogenase. CO did, however, eliminate the inhibition of both electron flux and MgATP hydrolysis by CN-, but not that caused by azide. These different responses to CO suggest different sites or modes of interaction for these two substrates with V-nitrogenase.


Assuntos
Amônia/metabolismo , Azidas/metabolismo , Azotobacter vinelandii/enzimologia , Formaldeído/metabolismo , Cianeto de Hidrogênio/metabolismo , Nitrogenase/metabolismo , Monóxido de Carbono/farmacologia , Catálise , Oxirredução
17.
Biochem J ; 397(2): 261-70, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16566750

RESUMO

Although it is generally accepted that the active site of nitrogenase is located on the FeMo-cofactor, the exact site(s) of N2 binding and reduction remain the subject of continuing debate, with both molybdenum and iron atoms being suggested as key players. The current consensus favours binding of acetylene and some other non-biologically relevant substrates to the central iron atoms of the FeMo-cofactor [Dos Santos, Igarashi, Lee, Hoffman, Seefeldt and Dean (2005) Acc. Chem. Res. 38, 208-214]. The reduction of N2 is, however, a more demanding process than reduction of these alternative substrates because it has a much higher activation energy and does not bind until three electrons have been accumulated on the enzyme. The possible conversion of bidentate into monodentate homocitrate on this three electron-reduced species has been proposed to free up a binding site for N2 on the molybdenum atom. One of the features of this hypothesis is that alpha-Lys426 facilitates chelate ring opening and subsequent orientation of the monodentate homocitrate by forming a specific hydrogen bond to the homocitrate -CH2CH2CO2- carboxylate group. In support of this concept, we show that mutation of alpha-Lys426 can selectively perturb N2 reduction without affecting acetylene reduction. We interpret our experimental observations in the light of a detailed molecular mechanics modelling study of the wild-type and altered MoFe-nitrogenases.


Assuntos
Azotobacter vinelandii/metabolismo , Molibdoferredoxina/química , Fixação de Nitrogênio , Nitrogênio/química , Ácidos Tricarboxílicos/química , Catálise , Ligação de Hidrogênio , Lisina/química , Modelos Químicos , Modelos Moleculares , Molibdênio/química
18.
Biochim Biophys Acta ; 1750(2): 154-65, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15925553

RESUMO

Gluconacetobacter diazotrophicus Pal-5 grew well and expressed nitrogenase activity in the absence of NH4+ and at initial O2 concentrations greater than 5% in the culture atmosphere. G. diazotrophicus nitrogenase consisted of two components, Gd1 and Gd2, which were difficult to separate but were purified individually to homogeneity. Their compositions were very similar to those of Azotobacter vinelandii nitrogenase, however, all subunits were slightly smaller in size. The purified Gd1 protein contained a 12:1 Fe/Mo ratio as compared to 14:1 found for Av1 purified in parallel. Both Gd2 and Av2 contained 3.9 Fe atoms per molecule. Dithionite-reduced Gd1 exhibited EPR features at g=3.69, 3.96, and 4.16 compared with 3.64 and 4.27 for Av1. Gd2 gave an S=1/2 EPR signal identical to that of Av2. A Gd1 maximum specific activity of 1600 nmol H2 (min mg of protein)(-1) was obtained when complemented with either Gd2 or Av2, however, more Av2 was required. Gd2 had specific activities of 600 and 1100 nmol H2 (min mg protein)(-1) when complemented with Av1 and Gd1, respectively. The purified G. diazotrophicus nitrogenase exhibited a narrowed pH range for effective catalysis compared to the A. vinelandii nitrogenase, however, both exhibited maximum specific activity at about pH 7. The Gd-nitrogenase was more sensitive to ionic strength than the Av-nitrogenase.


Assuntos
Gluconacetobacter/enzimologia , Nitrogenase/metabolismo , Saccharum/microbiologia , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Amônia/farmacologia , Azotobacter vinelandii/enzimologia , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogenase/química , Nitrogenase/isolamento & purificação , Oxirredução , Oxigênio/metabolismo , Oxigênio/farmacologia , Cloreto de Sódio/farmacologia , Titulometria
19.
J Biol Inorg Chem ; 10(4): 394-406, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15887041

RESUMO

The resting state of wild-type nitrogenase MoFe protein exhibits an S=3/2 electron paramagnetic resonance (EPR) signal originating from the FeMo cofactor, the enzyme's active site. When nitrogenase turns over under CO, this signal disappears and one (sometimes two) of three new EPR signals, which also arise from the FeMo cofactor, appears, depending on the CO concentration. The appearance and properties of these CO-inducible EPR signals, which were also generated with variant MoFe proteins (alphaR96Q, alphaR96K, alphaQ191K, alphaR359K, alphaR96K/alphaR359K, alphaR277C, alphaR277H, and DeltanifV) that are impacted around the FeMo cofactor, have been investigated. No new CO-induced EPR signals arise from any variant, suggesting that no new CO-binding sites are produced by the substitutions. All variant proteins, except alphaR277H, produce the lo-CO signal; all, except alphaQ191K, produce the hi(5)-CO signal; but only two (alphaR96Q and DeltanifV) exhibit the hi-CO signal. FeMo cofactor's environment clearly dictates which CO-induced EPR signals are generated; however, none of these EPR signals correlate with CO inhibition of H(2) evolution observed with some of these variants. CO inhibition of H(2) evolution is, therefore, due to CO binding to a different site(s) from those responsible for the CO-induced EPR signals. Some resting-state variants have overlapping S=3/2 EPR signals, whose intensities simultaneously decrease under turnover conditions, indicating that all FeMo cofactor conformations are catalytically active. Moreover, these variants produce a similar number of hi(5)-CO signals after turnover under CO to the number of resting-state S=3/2 signals. The FeMo cofactor associated with the hi(5)-CO signal likely contains two bridging CO molecules.


Assuntos
Azotobacter vinelandii/química , Monóxido de Carbono/farmacologia , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Molibdoferredoxina/química , Molibdoferredoxina/genética , Mutação de Sentido Incorreto , Nitrogenase/química , Nitrogenase/genética
20.
Biochemistry ; 43(10): 2947-56, 2004 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15005631

RESUMO

The interactions of acetylene with its binding site(s) on the FeMo cofactor of the MoFe protein of Azotobacter vinelandii nitrogenase were probed using C(2)D(2). Specifically, the effects of changing the C(2)D(2) concentration, electron flux, pH, or the individual presence of N(2), ethylene, or CO on the formation of both cis- and trans-1,2-ethylene-d(2) from C(2)D(2) were measured. A hypothesis, involving two acetylene-reduction sites, was developed to explain the changes observed in the stereoselective protonation during both substrate-concentration-dependent and electron-flux-dependent C(2)D(2) reduction. One of these sites is a higher-affinity acetylene-binding site that produces only cis-1,2-ethylene-d(2) from C(2)D(2). The other is a lower-affinity acetylene-binding site, which produces both cis- and trans-1,2-ethylene-d(2). Added N(2) specifically inhibited the production of cis-1,2-ethylene-d(2) from C(2)D(2), which indicates that N(2) binds to (and is reduced at) the higher-affinity acetylene-binding site. High concentrations of added ethylene behaved like very high concentrations of acetylene and inhibited both the electron flux flowing through the enzyme and cis-isomer formation. Added CO, at very low concentrations, did not affect the relative distribution of cis- and trans-isomers, indicating a separate CO-binding site. The results of pH-dependence experiments showed that substrate inhibition at high C(2)D(2) concentrations is enhanced under acidic conditions but is absent under basic conditions and suggest that a low proton flux has a similar impact to that of a low electron flux; both inhibit cis-1,2-ethylene-d(2) formation selectively. Apparently, the factors affecting stereoselective protonation during C(2)D(2) reduction could be the same as those that perturb protonation of the FeMo cofactor when acetylene is reduced. The observed nitrogenase-catalyzed production of ethylene-d(1) from C(2)D(2) implicates a reversible protonation step in the mechanistic pathway.


Assuntos
Acetileno/química , Azotobacter vinelandii/enzimologia , Nitrogenase/química , Prótons , Sítios de Ligação , Monóxido de Carbono/química , Catálise , Elétrons , Inibidores Enzimáticos/química , Etilenos/biossíntese , Etilenos/química , Concentração de Íons de Hidrogênio , Modelos Químicos , Molibdoferredoxina/química , Nitrogênio/química , Nitrogenase/antagonistas & inibidores , Oxirredução , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...