Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6127, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779120

RESUMO

The interplay between spin-orbit interaction and magnetic order is one of the most active research fields in condensed matter physics and drives the search for materials with novel, and tunable, magnetic and spin properties. Here we report on a variety of unique and unexpected observations in thin multiferroic Ge1-xMnxTe films. The ferrimagnetic order parameter in this ferroelectric semiconductor is found to switch direction under magnetostochastic resonance with current pulses many orders of magnitude lower as for typical spin-orbit torque systems. Upon a switching event, the magnetic order spreads coherently and collectively over macroscopic distances through a correlated spin-glass state. Utilizing these observations, we apply a novel methodology to controllably harness this stochastic magnetization dynamics.

2.
Sci Rep ; 12(1): 18724, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333578

RESUMO

We present the element-specific and time resolved visualization of uniform ferromagnetic resonance excitations of a Permalloy (Py) disk-Cobalt (Co) stripe bilayer microstructure. The transverse high frequency component of the resonantly excited magnetization is sampled in the ps regime by a combination of ferromagnetic resonance (FMR) and scanning transmission X-ray microscopy (STXM-FMR) recording snapshots of the local magnetization precession of Py and Co with nanometer spatial resolution. The approach allows us to individually image the resonant dynamic response of each element, and we find that angular momentum is transferred from the Py disk to the Co stripe and vice versa at their respective resonances. The integral (cavity) FMR spectrum of our sample shows an unexpected additional third resonance. This resonance is observed in the STXM-FMR experiments as well. Our microscopic findings suggest that it is governed by magnetic exchange between Py and Co, showing for the Co stripe a difference in relative phase of the magnetization due to stray field influence.

3.
Nanomaterials (Basel) ; 12(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144891

RESUMO

A reentrant temperature dependence of the thermoresistivity ρxx(T) between an onset local superconducting ordering temperature Tloconset and a global superconducting transition at T=Tglooffset has been reported in disordered conventional 3-dimensional (3D) superconductors. The disorder of these superconductors is a result of either an extrinsic granularity due to grain boundaries, or of an intrinsic granularity ascribable to the electronic disorder originating from impurity dopants. Here, the effects of Fe doping on the electronic properties of sputtered NbN layers with a nominal thickness of 100 nm are studied by means of low-T/high-µ0H magnetotransport measurements. The doping of NbN is achieved via implantation of 35 keV Fe ions. In the as-grown NbN films, a local onset of superconductivity at Tloconset=15.72K is found, while the global superconducting ordering is achieved at Tglooffset=15.05K, with a normal state resistivity ρxx=22µΩ·cm. Moreover, upon Fe doping of NbN, ρxx=40µΩ·cm is estimated, while Tloconset and Tglooffset are measured to be 15.1 K and 13.5 K, respectively. In Fe:NbN, the intrinsic granularity leads to the emergence of a bosonic insulator state and the normal-metal-to-superconductor transition is accompanied by six different electronic phases characterized by a N-shaped T dependence of ρxx(T). The bosonic insulator state in a s-wave conventional superconductor doped with dilute magnetic impurities is predicted to represent a workbench for emergent phenomena, such as gapless superconductivity, triplet Cooper pairings and topological odd frequency superconductivity.

4.
Adv Mater ; 33(42): e2102935, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34469013

RESUMO

Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect, which is potentially useful for high-precision metrology, edge channel spintronics, and topological qubits.  The stable 2+ state of Mn enables intrinsic magnetic topological insulators. MnBi2 Te4 is, however, antiferromagnetic with 25 K Néel temperature and is strongly n-doped. In this work, p-type MnSb2 Te4 , previously considered topologically trivial, is shown to be a ferromagnetic topological insulator for a few percent Mn excess. i) Ferromagnetic hysteresis with record Curie temperature of 45-50 K, ii) out-of-plane magnetic anisotropy, iii) a 2D Dirac cone with the Dirac point close to the Fermi level, iv) out-of-plane spin polarization as revealed by photoelectron spectroscopy, and v) a magnetically induced bandgap closing at the Curie temperature, demonstrated by scanning tunneling spectroscopy (STS), are shown. Moreover, a critical exponent of the magnetization ß ≈ 1 is found, indicating the vicinity of a quantum critical point. Ab initio calculations reveal that Mn-Sb site exchange provides the ferromagnetic interlayer coupling and the slight excess of Mn nearly doubles the Curie temperature. Remaining deviations from the ferromagnetic order open the inverted bulk bandgap and render MnSb2 Te4 a robust topological insulator and new benchmark for magnetic topological insulators.

5.
Mater Adv ; 2(16): 5494-5500, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34458848

RESUMO

Currently, energy-efficient electrocatalytic oxygen evolution from water involves the use of noble metal oxides. Here, we show that highly p-conducting zinc cobaltite spinel Zn1.2Co1.8O3.5 offers an enhanced electrocatalytic activity for oxygen evolution. We refer to previous studies on sputtered Zn-Co spinels with optimized conductivity for implementation as (p-type) transparent conducting oxides. Based on that, we manufacture off-stoichiometric conducting p-spinel catalytic anodes on tetragonal Ti, Au-Ti and hexagonal Al-doped ZnO carriers and report the evolution of O2 at Tafel slopes between 40.5 and 48 mV dec-1 and at overpotentials between 0.35 and 0.43 V (at 10 mA cm-2). The anodic stability, i.e., 50 h of continuous O2 electrolysis in 1 M KOH, suggests that increasing the conductivity is advantageous for electrolysis, particularly for reducing the ohmic losses and ensuring activity across the entire surface. We conclude by pointing out the merits of improving p-doping in Zn-Co spinels by optimized growth on a tetragonal Ti-carrier and their application as dimension-stable 3d-metal anodes.

6.
Materials (Basel) ; 13(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722094

RESUMO

Phase-separated semiconductors containing magnetic nanostructures are relevant systems for the realization of high-density recording media. Here, the controlled strain engineering of Ga δ FeN layers with Fe y N embedded nanocrystals (NCs) via Al x Ga 1 - x N buffers with different Al concentration 0 < x Al < 41 % is presented. Through the addition of Al to the buffer, the formation of predominantly prolate-shaped ε -Fe 3 N NCs takes place. Already at an Al concentration x Al ≈ 5% the structural properties-phase, shape, orientation-as well as the spatial distribution of the embedded NCs are modified in comparison to those grown on a GaN buffer. Although the magnetic easy axis of the cubic γ '-Ga y Fe 4 - y N nanocrystals in the layer on the x Al = 0 % buffer lies in-plane, the easy axis of the ε -Fe 3 N NCs in all samples with Al x Ga 1 - x N buffers coincides with the [ 0001 ] growth direction, leading to a sizeable out-of-plane magnetic anisotropy and opening wide perspectives for perpendicular recording based on nitride-based magnetic nanocrystals.

7.
Nanomaterials (Basel) ; 9(7)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261780

RESUMO

Using a time-resolved detection scheme in scanning transmission X-ray microscopy (STXM), we measured element resolved ferromagnetic resonance (FMR) at microwave frequencies up to 10 GHz and a spatial resolution down to 20 nm at two different synchrotrons. We present different methods to separate the contribution of the background from the dynamic magnetic contrast based on the X-ray magnetic circular dichroism (XMCD) effect. The relative phase between the GHz microwave excitation and the X-ray pulses generated by the synchrotron, as well as the opening angle of the precession at FMR can be quantified. A detailed analysis for homogeneous and inhomogeneous magnetic excitations demonstrates that the dynamic contrast indeed behaves as the usual XMCD effect. The dynamic magnetic contrast in time-resolved STXM has the potential be a powerful tool to study the linear and nonlinear, magnetic excitations in magnetic micro- and nano-structures with unique spatial-temporal resolution in combination with element selectivity.

8.
ACS Appl Mater Interfaces ; 9(32): 27036-27044, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28782941

RESUMO

The application potential of rare earth nitride (REN) materials has been limited due to their high sensitivity to air and moisture leading to facile oxidation upon exposure to ambient conditions. For the growth of device quality films, physical vapor deposition methods, such as molecular beam epitaxy, have been established in the past. In this regard, aluminum nitride (AlN) has been employed as a capping layer to protect the functional gadolinium nitride (GdN) from interaction with the atmosphere. In addition, an AlN buffer was employed between a silicon substrate and GdN serving as a seeding layer for epitaxial growth. In pursuit to grow high-quality GdN thin films by chemical vapor deposition (CVD), this successful concept is transferred to an in situ CVD process. Thereby, AlN thin films are included step-wise in the stack starting with Si/GdN/AlN structures to realize long-term stability of the oxophilic GdN layer. As a second strategy, a Si/AlN/GdN/AlN stacked structure was grown, where the additional buffer layer serves as the seeding layer to promote crystalline GdN growth. In addition, chemical interaction between GdN and the Si substrate can be prevented by spatial segregation. The stacked structures grown for the first time with a continuous CVD process were subjected to a detailed investigation in terms of structure, morphology, and composition, revealing an improved GdN purity with respect to earlier grown CVD thin films. Employing thin AlN buffer layers, the crystallinity of the GdN films on Si(100) could additionally be significantly enhanced. Finally, the magnetic properties of the fabricated stacks were evaluated by performing superconducting quantum interference device measurements, both of the as-deposited films and after exposure to ambient conditions, suggesting superparamagnetism of ferromagnetic GdN grains. The consistency of the magnetic properties precludes oxidation of the REN material due to the amorphous AlN capping layer.

9.
Phys Rev B ; 94(5)2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459114

RESUMO

The evolution of local ferroelectric lattice distortions in multiferroic Ge1-x Mn x Te is studied by x-ray diffraction, x-ray absorption spectroscopy and density functional theory. We show that the anion/cation displacements smoothly decrease with increasing Mn content, thereby reducing the ferroelectric transition from 700 to 100 K at x = 0.5, where the ferromagnetic Curie temperature reaches its maximum. First principles calculations explain this quenching by different local bond contributions of the Mn 3d shell compared to the Ge 4s shell in excellent quantitative agreement with the experiments.

10.
Sci Rep ; 5: 16863, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26578268

RESUMO

We have investigated the relation between local structure, valence and carrier type with magnetism in the Zn-Co-O system. Thin films ranging from wurtzite Zn(1-x)Co(x)O (Co:ZnO) to ZnCo2O4 spinel were grown on c-sapphire substrates. On the one hand, the unprecedented doping of x = 0.6 Co in ZnO enables to study the structural and magnetic properties well-above the coalescence limit. On the other hand, the ZnCo2O4 spinel provides a p-type environment. We find a strong correlation between local structure, valence and carrier type throughout the Zn-Co-O system. In contrast to earlier publications neither 60% Co:ZnO nor ZnCo2O4 exhibit any sign of ferromagnetic order despite of the high concentration of magnetic ions and a p-type carrier background. Instead, antiferromagnetic exchange is found to be the predominant magnetic interaction in the Zn-Co-O system.

11.
Rev Sci Instrum ; 86(9): 093703, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26429444

RESUMO

We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ∼6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ∼0.1° amplitude at ∼9 GHz in a micrometer-sized cobalt strip.

12.
J Nanosci Nanotechnol ; 14(7): 5095-102, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24757985

RESUMO

Metalorganic chemical vapor deposition (MOCVD) of nanostructured Er2O3 thin films was performed using the Er-tris-guanidinate precursor [Er(DPDMG)3] (DPDMG = diisopropyl-2-dimethylamidoguanidinato) as the Er source and oxygen. Film deposition was carried out on Si(100) and quartz glass substrates and the process parameters namely temperature, pressure and oxygen flow rate were varied. The resulting thin films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) for investigating the crystallinity and morphology, respectively. The chemical composition of the film was investigated by X-ray photoelectron spectroscopy (XPS) measurements. Transmittance and absorption spectra of the 600 degrees C film grown on glass substrates were performed by UV-vis measurements revealing more than 80% transmittance. The potential of Er2O3 thin films as gate dielectrics was verified by carrying out capacitance-voltage (C-V) and current-voltage (I-V) measurements. Dielectric constants estimated from the accumulation capacitance were found to be in the range of 10-12 in AC frequencies of 1 MHz down to 10 kHz and the leakage current of the order of 2 x 10(-8) A/cm2 at the applied field of 1 MV cm(-1) was measured for films deposited under optimised process conditions. The low leakage current and high dielectric constant implies good quality of the Er2O3 layers relevant for high-k applications. These layers were found to be paramagnetic with a slightly reduced magnetic moment of the Er3+ ions.

13.
Phys Rev Lett ; 112(11): 117201, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702407

RESUMO

We report a new type of nanomechanical resonator system based on one-dimensional chains of only 4 to 7 weakly coupled small molecules. Experimental characterization of the truly nanoscopic resonators is achieved by means of a novel radio-frequency scanning tunneling microscopy detection technique at cryogenic temperatures. Above 20 K we observe concerted oscillations of the individual molecules in chains, reminiscent of the first and second eigenmodes of a one-dimensional harmonic resonator. Radio-frequency scanning tunneling microscopy based frequency measurement reveals a characteristic length dependence of the oscillation frequency (between 51 and 127 MHz) in reasonable agreement with one-dimensional oscillator models. Our study demonstrates a new strategy for investigating and controlling the resonance properties of nanomechanical oscillators.

14.
J Nanosci Nanotechnol ; 12(2): 1054-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629894

RESUMO

A series of Zn1-xCo(x)O epitaxial films around 100 nm with nominal Co concentration from 5% to 15% was prepared by ultra high vacuum (UHV) magnetron reactive sputtering. The optical, magnetic and magneto-transport properties of this series of Zn1-xCo(x)O epitaxial films were investigated, respectively. Resonant Raman spectra indicate the high structural and crystalline quality of these Zn1-xCo(x)O (5 < or = x < or = 15%) films, and confirm a consistent correlation between the substituting Co ions content with the Co doping concentration as well. Paramagnetism, superparamagnetism and ferromagnetism with altered Curie temperature from low temperatures to above room temperatures have been observed in these films by SQUID magnetometry. The broad blocking temperature range indicates the presence of inhomogenous distribution of the magnetic nano-clusters in the superparamagnetic films. However, the magneto-transport behaviors do not strongly respond to the change of the magnetic properties from paramagnetism to ferromagnetism of these Zn1-xCo(x)O films. The lack of efficient coupling between the inhomogenous magnetic nanoclusters and the carrier system in ferromagnetic Zn1-xCo(x)O films highlights the absence of the intrinsic magnetic origins in high structural quality Zn1-xCo(x)O (5 < or = x < or = 15%) epitaxial films. On the other hand, the competition between the spin alignments and the inhomogenous local disorder effect by magnetic ions is suggested to be responsible for the carrier properties and the oberseved magnetoresistance in these Co doping Zn1-xCo(x)O (5 < or = x < or = 15%) epitaxial films.

15.
Nano Lett ; 11(4): 1710-5, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21391653

RESUMO

Correlating the electronic structure and magnetic response with the morphology and crystal structure of the same single ferromagnetic nanoparticle has been up to now an unresolved challenge. Here, we present measurements of the element-specific electronic structure and magnetic response as a function of magnetic field amplitude and orientation for chemically synthesized single Fe nanocubes with 18 nm edge length. Magnetic states and interactions of monomers, dimers, and trimers are analyzed by X-ray photoemission electron microscopy for different particle arrangements. The element-specific electronic structure can be probed and correlated with the changes of magnetic properties. This approach opens new possibilities for a deeper understanding of the collective response of magnetic nanohybrids in multifunctional materials and in nanomagnetic colloidal suspensions used in biomedical and engineering technologies.


Assuntos
Ferro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Impedância Elétrica , Magnetismo , Teste de Materiais , Tamanho da Partícula
16.
Circulation ; 114(17): 1855-62, 2006 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17030689

RESUMO

BACKGROUND: The primary cause of early death in untreated Marfan syndrome (MFS) patients is aortic dilatation and dissection. METHODS AND RESULTS: We investigated whether ascending aortic samples from the fibrillin-1-underexpressing mgR mouse model for MFS or a recombinant fibrillin-1 fragment containing an elastin-binding protein (EBP) recognition sequence can act as chemotactic stimuli for macrophages. Both the aortic extracts from the mgR/mgR mice and the fibrillin-1 fragment significantly increased macrophage chemotaxis compared with extracts from wild-type mice or buffer controls. The chemotactic response was significantly diminished by pretreatment of macrophages with lactose or with the elastin-derived peptide VGVAPG and by pretreatment of samples with a monoclonal antibody directed against an EBP recognition sequence. Mutation of the EBP recognition sequence in the fibrillin-1 fragment also abolished the chemotactic response. These results indicate the involvement of EBP in mediating the effects. Additionally, investigation of macrophages in aortic specimens of MFS patients demonstrated macrophage infiltration in the tunica media. CONCLUSIONS: Our findings demonstrate that aortic extracts from mgR/mgR mice can stimulate macrophage chemotaxis by interaction with EBP and show that a fibrillin-1 fragment possesses chemotactic stimulatory activity similar to that of elastin degradation peptides. They provide a plausible molecular mechanism for the inflammatory infiltrates observed in the mgR mouse model and suggest that inflammation may represent a component of the complex pathogenesis of MFS.


Assuntos
Aorta/química , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Síndrome de Marfan/metabolismo , Proteínas dos Microfilamentos/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Bovinos , Modelos Animais de Doenças , Elastina/química , Elastina/metabolismo , Fibrilina-1 , Fibrilinas , Síndrome de Marfan/genética , Camundongos , Camundongos Mutantes , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Extratos de Tecidos/farmacologia
17.
J Mol Cell Cardiol ; 40(2): 234-46, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16442122

RESUMO

Mutations in the gene for fibrillin-1 cause Marfan syndrome (MFS), a common hereditary disorder of connective tissue. Recent findings suggest that proteolysis, increased matrix metalloproteinase activity, and fragmentation of fibrillin-rich microfibrils in tissues of persons with MFS contribute to the complex pathogenesis of this disorder. In this study we show that a fibrillin-1 fragment containing a EGFEPG sequence that conforms to a putative GxxPG elastin-binding protein (EBP) consensus sequence upregulates the expression and production of matrix metalloproteinase (MMP)-1 by up to ninefold in a cell culture system. A mutation of the GxxPG consensus sequence site abrogated the effects. This is the first demonstration of such an effect for ligands other than elastin fragments. Molecular dynamics analysis of oligopeptides with the wildtype and mutant sequence support our biochemical results by predicting significant alterations of structural characteristics such as the potential for forming a type VIII beta-turn that are thought to be important for binding to the EBP. These results suggest that fibrillin-1 fragments may regulate MMP-1 expression, and that the dysregulation of MMPs related to fragmentation of fibrillin might contribute to the development of MFS. Our Gene Ontology (GO) analysis of the human proteome shows that proteins with multiple GxxPG motifs are highly enriched for GO terms related to the extracellular matrix. Matrix proteins with multiple GxxPG sites include fibrillin-1, -2, and -3, elastin, fibronectin, laminin, and several tenascins and collagens. Some of these proteins have been associated with disorders involving alterations in MMP regulation, and the results of the present study suggest a potential mechanism for these observations.


Assuntos
Metaloproteinase 1 da Matriz/biossíntese , Proteínas dos Microfilamentos/fisiologia , Fragmentos de Peptídeos/fisiologia , Receptores de Superfície Celular/fisiologia , Sequência de Aminoácidos , Biologia Computacional , Sequência Consenso , Bases de Dados de Proteínas , Indução Enzimática/fisiologia , Fibrilina-1 , Fibrilinas , Humanos , Metaloproteinase 1 da Matriz/genética , Proteínas dos Microfilamentos/genética , Mutação , Fragmentos de Peptídeos/genética , Receptores de Superfície Celular/genética , Regulação para Cima
18.
Int J Biochem Cell Biol ; 38(1): 23-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16159712

RESUMO

Versican is a large (1-2 x 10(6) Da) chondroitin-sulfate proteoglycan that can form large aggregates by means of interaction with hyaluronan and also binds to a series of other extracellular matrix proteins, chemokines and cell-surface molecules. Versican is a multifunctional molecule with roles in cell adhesion, matrix assembly, cell migration and proliferation. Characterization of the binding interactions mediated by the various domains of versican is a first step towards understanding the functions of versican and interacting molecules in the extracellular matrix. In this study we investigated a recombinant construct corresponding to the C-type lectin domain of versican and demonstrated a calcium-dependent self-association of this region by blot overlay and plasmon surface resonance assays. Electron microscopy provided further evidence of the relevance of the binding reaction by demonstrating a mixture of monomers, dimers and complex aggregates of recombinant versican C-type lectin domain. This binding reaction could contribute to the ability of versican to organize formation of the proteoglycan extracellular matrix by inducing binding of individual versican molecules or by modulating binding reactions to other matrix components.


Assuntos
Cálcio/química , Proteoglicanas de Sulfatos de Condroitina/química , Lectinas Tipo C/química , Complexos Multiproteicos/química , Cálcio/metabolismo , Quimiocinas/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/ultraestrutura , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície/métodos , Versicanas
19.
Hum Genet ; 116(1-2): 51-61, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15517394

RESUMO

The Marfan syndrome (MFS), a relatively common autosomal dominant disorder of connective tissue, is caused by mutations in the gene for fibrillin-1 (FBN1). Fibrillin-1 is the main component of the 10- to 12-nm microfibrils that together with elastin form elastic fibers found in tissues such as the aortic media. Recently, FBN1 mutations have been shown to increase the susceptibility of fibrillin-1 to proteolysis in vitro, and other findings suggest that up-regulation of matrix metalloproteinases (MMP), as well as fragmentation of microfibrils, could play a role in the pathogenesis of MFS. In the present work, we have investigated the influence of fibrillin-1 fragments on the expression of MMP-1, MMP-2, and MMP-3 in a cell culture system. Cultured human dermal fibroblasts were incubated with several different recombinant fibrillin-1 fragments. The expression level of MMP-1, MMP-2, and MMP-3, was determined by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and the concentration of the corresponding proteins was estimated by quantitative Western blotting. Our results establish that treatment of cultured human dermal fibroblasts with recombinant fibrillin-1 fragments containing the arginine-glycine-aspartic acid (RGD) integrin-binding motif of fibrillin-1 induces up-regulation of MMP-1 and MMP-3. A similar effect was seen upon stimulation with a synthetic RGD peptide. The expression of MMP-2 was not influenced by treatment. Our results suggest the possibility that fibrillin fragments could themselves have pathogenic effects by leading to up-regulation of MMPs, which in turn may be involved in the progressive breakdown of microfibrils thought to play a role in MFS.


Assuntos
Síndrome de Marfan/genética , Metaloproteinases da Matriz/metabolismo , Proteínas dos Microfilamentos/genética , Oligopeptídeos/genética , Fragmentos de Peptídeos/genética , Indução Enzimática , Fibrilina-1 , Fibrilinas , Humanos , Síndrome de Marfan/etiologia , Síndrome de Marfan/metabolismo , Metaloproteinases da Matriz/genética , Proteínas dos Microfilamentos/metabolismo , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...