Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144891

RESUMO

A reentrant temperature dependence of the thermoresistivity ρxx(T) between an onset local superconducting ordering temperature Tloconset and a global superconducting transition at T=Tglooffset has been reported in disordered conventional 3-dimensional (3D) superconductors. The disorder of these superconductors is a result of either an extrinsic granularity due to grain boundaries, or of an intrinsic granularity ascribable to the electronic disorder originating from impurity dopants. Here, the effects of Fe doping on the electronic properties of sputtered NbN layers with a nominal thickness of 100 nm are studied by means of low-T/high-µ0H magnetotransport measurements. The doping of NbN is achieved via implantation of 35 keV Fe ions. In the as-grown NbN films, a local onset of superconductivity at Tloconset=15.72K is found, while the global superconducting ordering is achieved at Tglooffset=15.05K, with a normal state resistivity ρxx=22µΩ·cm. Moreover, upon Fe doping of NbN, ρxx=40µΩ·cm is estimated, while Tloconset and Tglooffset are measured to be 15.1 K and 13.5 K, respectively. In Fe:NbN, the intrinsic granularity leads to the emergence of a bosonic insulator state and the normal-metal-to-superconductor transition is accompanied by six different electronic phases characterized by a N-shaped T dependence of ρxx(T). The bosonic insulator state in a s-wave conventional superconductor doped with dilute magnetic impurities is predicted to represent a workbench for emergent phenomena, such as gapless superconductivity, triplet Cooper pairings and topological odd frequency superconductivity.

2.
Mater Adv ; 2(16): 5494-5500, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34458848

RESUMO

Currently, energy-efficient electrocatalytic oxygen evolution from water involves the use of noble metal oxides. Here, we show that highly p-conducting zinc cobaltite spinel Zn1.2Co1.8O3.5 offers an enhanced electrocatalytic activity for oxygen evolution. We refer to previous studies on sputtered Zn-Co spinels with optimized conductivity for implementation as (p-type) transparent conducting oxides. Based on that, we manufacture off-stoichiometric conducting p-spinel catalytic anodes on tetragonal Ti, Au-Ti and hexagonal Al-doped ZnO carriers and report the evolution of O2 at Tafel slopes between 40.5 and 48 mV dec-1 and at overpotentials between 0.35 and 0.43 V (at 10 mA cm-2). The anodic stability, i.e., 50 h of continuous O2 electrolysis in 1 M KOH, suggests that increasing the conductivity is advantageous for electrolysis, particularly for reducing the ohmic losses and ensuring activity across the entire surface. We conclude by pointing out the merits of improving p-doping in Zn-Co spinels by optimized growth on a tetragonal Ti-carrier and their application as dimension-stable 3d-metal anodes.

3.
Nanomaterials (Basel) ; 9(7)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261780

RESUMO

Using a time-resolved detection scheme in scanning transmission X-ray microscopy (STXM), we measured element resolved ferromagnetic resonance (FMR) at microwave frequencies up to 10 GHz and a spatial resolution down to 20 nm at two different synchrotrons. We present different methods to separate the contribution of the background from the dynamic magnetic contrast based on the X-ray magnetic circular dichroism (XMCD) effect. The relative phase between the GHz microwave excitation and the X-ray pulses generated by the synchrotron, as well as the opening angle of the precession at FMR can be quantified. A detailed analysis for homogeneous and inhomogeneous magnetic excitations demonstrates that the dynamic contrast indeed behaves as the usual XMCD effect. The dynamic magnetic contrast in time-resolved STXM has the potential be a powerful tool to study the linear and nonlinear, magnetic excitations in magnetic micro- and nano-structures with unique spatial-temporal resolution in combination with element selectivity.

4.
Sci Rep ; 5: 16863, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26578268

RESUMO

We have investigated the relation between local structure, valence and carrier type with magnetism in the Zn-Co-O system. Thin films ranging from wurtzite Zn(1-x)Co(x)O (Co:ZnO) to ZnCo2O4 spinel were grown on c-sapphire substrates. On the one hand, the unprecedented doping of x = 0.6 Co in ZnO enables to study the structural and magnetic properties well-above the coalescence limit. On the other hand, the ZnCo2O4 spinel provides a p-type environment. We find a strong correlation between local structure, valence and carrier type throughout the Zn-Co-O system. In contrast to earlier publications neither 60% Co:ZnO nor ZnCo2O4 exhibit any sign of ferromagnetic order despite of the high concentration of magnetic ions and a p-type carrier background. Instead, antiferromagnetic exchange is found to be the predominant magnetic interaction in the Zn-Co-O system.

5.
J Nanosci Nanotechnol ; 12(2): 1054-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629894

RESUMO

A series of Zn1-xCo(x)O epitaxial films around 100 nm with nominal Co concentration from 5% to 15% was prepared by ultra high vacuum (UHV) magnetron reactive sputtering. The optical, magnetic and magneto-transport properties of this series of Zn1-xCo(x)O epitaxial films were investigated, respectively. Resonant Raman spectra indicate the high structural and crystalline quality of these Zn1-xCo(x)O (5 < or = x < or = 15%) films, and confirm a consistent correlation between the substituting Co ions content with the Co doping concentration as well. Paramagnetism, superparamagnetism and ferromagnetism with altered Curie temperature from low temperatures to above room temperatures have been observed in these films by SQUID magnetometry. The broad blocking temperature range indicates the presence of inhomogenous distribution of the magnetic nano-clusters in the superparamagnetic films. However, the magneto-transport behaviors do not strongly respond to the change of the magnetic properties from paramagnetism to ferromagnetism of these Zn1-xCo(x)O films. The lack of efficient coupling between the inhomogenous magnetic nanoclusters and the carrier system in ferromagnetic Zn1-xCo(x)O films highlights the absence of the intrinsic magnetic origins in high structural quality Zn1-xCo(x)O (5 < or = x < or = 15%) epitaxial films. On the other hand, the competition between the spin alignments and the inhomogenous local disorder effect by magnetic ions is suggested to be responsible for the carrier properties and the oberseved magnetoresistance in these Co doping Zn1-xCo(x)O (5 < or = x < or = 15%) epitaxial films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA