Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839051

RESUMO

In this work, mixed Ni/Co and Ni/Fe metal phosphides with different metal ratios were synthesized through the phosphidization of high-surface-area hydroxides grown hydrothermally on carbon cloth. The materials were characterized by means of X-ray photoemission spectroscopy, X-ray diffraction, energy dispersive X-ray analysis, and electron microscopies. The electrocatalytic performance in the electrochemical water splitting was tested in alkaline media. With the aim of determining the chemical stability of the mixed phosphides and the possible changes undergone under catalytic conditions, the materials were characterized before and after the electrochemical tests. The best performances in the hydrogen evolution reaction were achieved when synergic interactions are established among the metal centers, as suggested by the outstanding performances (50 mV to achieve 10 mA/cm2) of materials containing the highest amount of ternary compounds, i.e., NiCoP and NiFeP. The best performances in the oxygen evolution reaction were reached by the Ni-Fe materials. Under these conditions, it was demonstrated that a strong oxidation of the surface and the dissolution of the phosphide/phosphate component takes place, with the consequent formation of the corresponding metal oxides and hydroxides.

2.
Inorg Chem ; 62(5): 1804-1812, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35312306

RESUMO

Metal hydroxides catalyze organic transformations and photochemical processes and serve as precursors for the oxide layers of functional multicomponent devices. However, no general methods are available for the preparation of stable water-soluble complexes of metal hydroxide nanocrystals (NCs) that might be more effective in catalysis and serve as versatile precursors for the reproducible fabrication of multicomponent devices. We now report that InIII-substituted monodefect Wells-Dawson (WD) polyoxometalate (POM) cluster anions, [α2-P2W17O61InIIIOH)]8-, serve as ligands for stable, water-soluble complexes, 1, of platelike, predominantly cubic-phase (dzhalindite) In(OH)3 NCs that after optimization contain ca. 10% InOOH. Images from cryogenic tranmsission electron microscopy reveal numerous WD ligands at the surfaces of platelike NCs, with average dimensions of 17 × 28 × 2 nm, each complexed by an average of ca. 450 InIII-substituted WD cluster anions and charge-balanced by 3600 Na+ countercations. Facilitated by the water solubility of 1, countercation exchange is used to stoichiometrically disperse ca. 1800 Cu2+ ions in an atomically homogeneous fashion around the surfaces of each NC core. The utility of this impregnation method is illustrated by using the ion-exchanged material as an electrocatalyst that reduces CO2 to CO 15 times faster per milligram of Cu than does K6Cu[P2CuII(H2O)W17O61] (control) alone. More generally, the findings point to POM complexation as a promising method for stabilizing and solubilizing reactive d-, p-, and f-block metal hydroxide NCs and for enabling their utilization as versatile components in the fabrication of functional multicomponent materials.

3.
Angew Chem Int Ed Engl ; 62(10): e202213762, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580402

RESUMO

The formation of small 1 to 3 nm organic-ligand free metal-oxide nanocrystals (NCs) is essential to utilization of their attractive size-dependent properties in electronic devices and catalysis. We now report that hexaniobate cluster-anions, [Nb6 O19 ]8- , can arrest the growth of metal-oxide NCs and stabilize them as water-soluble complexes. This is exemplified by formation of hexaniobate-complexed 2.4-nm monoclinic-phase CuO NCs (1), whose ca. 350 Cu-atom cores feature quantum-confinement effects that impart an unprecedented ability to catalyze visible-light water oxidation with no added photosensitizers or applied potentials, and at rates exceeding those of hematite NCs. The findings point to polyoxoniobate-ligand entrapment as a potentially general method for harnessing the size-dependent properties of very small semiconductor NCs as the cores of versatile, entirely-inorganic complexes.

4.
Angew Chem Int Ed Engl ; 61(49): e202213162, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36200676

RESUMO

Although pure and functionalized solid-state polyniobates such as layered perovskites and niobate nanosheets are photocatalysts for renewable-energy processes, analogous reactions by molecular polyoxoniobate cluster-anions are nearly absent from the literature. We now report that under simulated solar light, hexaniobate cluster-anion encapsulated 30-NiII -ion "fragments" of surface-protonated cubic-phase-like NiO cores activate the hexaniobate ligands towards CO2 reduction by water. Photoexcitation of the NiO cores promotes charge-transfer reduction of NbV to NbIV , increasing electron density at bridging oxo atoms of Nb-µ-O-Nb linkages that bind and convert CO2 to CO. Photogenerated NiO "holes" simultaneously oxidize water to dioxygen. The findings point to molecular complexation of suitable semiconductor "fragments" as a general method for utilizing electron-dense polyoxoniobate anions as nucleophilic photocatalysts for solar-light driven activation and reduction of small molecules.

5.
ACS Appl Mater Interfaces ; 14(1): 581-589, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34963045

RESUMO

Bifunctional electrocatalysts for efficient hydrogen generation from water splitting must overcome both the sluggish water dissociation step of the alkaline hydrogen evolution half-reaction (HER) and the kinetic barrier of the anodic oxygen evolution half-reaction (OER). Nickel phosphides are a promising catalysts family and are known to develop a thin active layer of oxidized Ni in an alkaline medium. Here, Ni12P5 was recognized as a suitable platform for the electrochemical production of γ-NiOOH─a particularly active phase─because of its matching crystallographic structure. The incorporation of tungsten by doping produces additional surface roughness, increases the electrochemical surface area (ESCA), and reduces the energy barrier for electron-coupled water dissociation (the Volmer step for the formation of Hads). When serving as both the anode and cathode, the 15% W-Ni12P5 catalyst provides an overall water splitting current density of 10 mA cm-2 at a cell voltage of only 1.73 V with good durability, making it a promising bifunctional catalyst for practical water electrolysis.

6.
J Am Chem Soc ; 143(49): 20769-20778, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34854676

RESUMO

The deposition of metal oxides is essential to the fabrication of numerous multicomponent solid-state devices and catalysts. However, the reproducible formation of homogeneous metal oxide films or of nanoparticle dispersions at solid interfaces remains an ongoing challenge. Here we report that molecular hexaniobate cluster anion complexes of structurally and electronically distinct fragments of cubic-spinel and monoclinic Co3O4 can serve as tractable yet well-defined functional analogues of bulk cobalt oxide. Notably, the energies of the highest-occupied and lowest-unoccupied molecular orbitals (HOMO and LUMO) of the molecular complexes, 1, closely match the valence- and conduction-band (VB and CB) energies of the parent bulk oxides. Use of 1 as a molecular analogue of the parent oxides is demonstrated by its remarkably simple deployment as a cocatalyst for direct Z-scheme reduction of CO2 by solar light and water. Namely, evaporation of an aqueous solution of 1 on TiO2-coated fluorinated tin oxide windows (TiO2/FTO), immersion in wet acetonitrile, and irradiation by simulated solar light under an atmosphere of CO2 give H2, CO, and CH4 in ratios nearly identical to those obtained using 20 nm spinel-Co3O4 nanocrystals, but 15 times more rapidly on a Co basis and more rapidly overall than other reported systems. Detailed investigation of the photocatalytic properties of 1 on TiO2/FTO includes confirmation of a direct Z-scheme charge-carrier migration pathway by in situ irradiated X-ray photoelectron spectroscopy. More generally, the findings point to a potentially important new role for coordination chemistry that bridges the conceptual divide between molecular and solid-state science.

7.
J Am Chem Soc ; 142(16): 7295-7300, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233364

RESUMO

Among molecular building blocks, metal oxide cluster anions and their countercations provide multiple options for the self-assembly of functional materials. Currently, however, rational design concepts are limited to electrostatic interactions with metal or organic countercations or to the attachment and subsequent reactions of functionalized organic ligands. We now demonstrate that bridging µ-oxo linkages can be used to string together a bifunctional Keggin anion building block, [PNb2Mo10O40]5- (1), the diniobium(V) analogue of [PV2Mo10O40]5- (2). Induction of µ-oxo ligation between the NbV═O moieties of 1 in acetonitrile via step-growth polymerization gives linear polymers with entirely inorganic backbones, some comprising over 140 000 repeating units, each with a 3- charge, exceeding that of previously reported organic or inorganic polyelectrolytes. As the chain grows, its flexible µ-oxo-linked backbone, with associated countercations, coils into a compact 270 nm diameter spherical secondary structure as a result of electrostatic interactions not unlike those within ionic lattices. More generally, the findings point to new options for the rational design of multidimensional structures based on µ-oxo linkages between NbV═O-functionalized building blocks.

8.
Inorg Chem ; 59(17): 11945-11952, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32134633

RESUMO

Dissolution of the polyoxometalate (POM) cluster anion H5[PV2Mo10O40] (1; a mixture of positional isomers) in 50% aq H2SO4 dramatically enhances its ability to oxidize methylarenes, while fully retaining the high selectivities typical of this versatile oxidant. To better understand this impressive reactivity, we now provide new information regarding the nature of 1 (115 mM) in 50% (9.4 M) H2SO4. Data from 51V NMR spectroscopy and cyclic voltammetry reveal that as the volume of H2SO4 in water is incrementally increased to 50%, V(V) ions are stoichiometrically released from 1, generating two reactive pervanadyl, VO2+, ions, each with a one-electron reduction potential of ca. 0.95 V (versus Ag/AgCl), compared to 0.46 V for 1 in 1.0 M aq H2SO4. Phosphorus-31 NMR spectra obtained in parallel reveal the presence of PO43-, which at 50% H2SO4 accounts for all the P(V) initially present in 1. Addition of (NH4)2SO4 leads to the formation of crystalline [NH4]6[Mo2O5(SO4)4] (34% yield based on Mo), whose structure (from single-crystal X-ray diffraction) features a corner-shared, permolybdenyl [Mo2O5]2+ core, conceptually derived by acid condensation of two MoO3 moieties. While 1 in 50% aq H2SO4 oxidizes p-xylene to p-methylbenzaldehyde with conversion and selectivity both greater than 90%, reaction with VO2+ alone gives the same high conversion, but at a significantly lower selectivity. Importantly, selectivity is fully restored by adding [NH4]6[Mo2O5(SO4)4], suggesting a central role for Mo(VI) in attenuating the (generally) poor selectivity achievable using VO2+ alone. Finally, 31P and 51V NMR spectra show that intact 1 is fully restored upon dilution to 1 M H2SO4.

9.
Nanoscale Adv ; 2(10): 4830-4840, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132882

RESUMO

In this work we designed a one-pot solvothermal synthesis of MoS2(1-x)Se2x nanosheets directly grown on N-doped reduced graphene oxide (hereafter N-rGO). We optimized the synthesis conditions to control the Se : S ratio, with the aim of tailoring the optoelectronic properties of the resulting nanocomposites for their use as electro- and photoelectro-catalysts in the hydrogen evolution reaction (HER). The synthesis protocol made use of ammonium tetrathiomolybdate (ATM) as MoS2 precursor and dimethyl diselenide (DMDSe) as selenizing agent. By optimizing growth conditions and post-annealing treatments, we produced either partially amorphous or highly crystalline chalcogen-defective electrocatalysts. All samples were tested for the HER in acidic environment, and the best performing among them, for the photoassisted HER. In low crystallinity samples, the introduction of Se is not beneficial for promoting the catalytic activity, and MoS2/N-rGO was the most active electrocatalyst. On the other hand, after the post-annealing treatment and the consequent crystallization of the materials, the best HER performance was obtained for the sample with x = 0.38, which also showed the highest enhancement upon light irradiation.

10.
Inorg Chem ; 56(5): 2400-2408, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-27936634

RESUMO

Metal oxide cluster-anion (polyoxometalate, or POM) protecting ligands, [α-PW11O39]7- (1), modify the rates at which 14 nm gold nanoparticles (Au NPs) catalyze an important model reaction, the aerobic (O2) oxidation of CO to CO2 in water. At 20 °C and pH 6.2, the following stoichiometry was observed: CO + O2 + H2O = CO2 + H2O2. After control experiments verified that the H2O2 product was sufficiently stable and did not react with 1 under turnover conditions, quantitative analysis of H2O2 was used to monitor the rates of CO oxidation, which increased linearly with the percent coverage of the Au NPs by 1 (0-64% coverage, with the latter value corresponding to 211 ± 19 surface-bound molecules of 1). X-ray photoelectron spectroscopy of Au NPs protected by a series of POM ligands (K+ salts): 1, the Wells-Dawson ion [α-P2W18O62]6- (2) and the monodefect Keggin anion [α-SiW11O39]8- (3) revealed that binding energies of electrons in the Au 4f7/2 and 4f5/2 atomic orbitals decreased as a linear function of the POM charge and percent coverage of Au NPs, providing a direct correlation between the electronic effects of the POMs bound to the surfaces of the Au NPs and the rates of CO oxidation by O2. Additional data show that this effect is not limited to POMs but occurs, albeit to a lesser extent, when common anions capable of binding to Au-NP surfaces, such as citrate or phosphate, are present.

12.
Dalton Trans ; 41(33): 9849-51, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22510818

RESUMO

Cryogenic transmission electron microscopy of polyoxometalate-protected gold nanoparticles reveals that the Preyssler ion, [NaP(5)W(30)O(110)](14-), lies "face down" with its C(5) axis perpendicular to the gold surface, while the Finke-Droege ion, [P(4)W(30)Zn(4)(H(2)O)(2)O(112)](16-), is "tilted", with its long axis close to 60° from the normal to the surface.

13.
Chem Commun (Camb) ; 48(16): 2207-9, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22252035

RESUMO

"Out-of-pocket" association of Ag(+) to the tetradentate defect site of mono-vacant Keggin and Wells-Dawson polyoxometalate (POM) cluster-anions is used to direct the formation of water-soluble AgCl nanocubes.


Assuntos
Nanoestruturas/química , Compostos de Prata/química , Compostos de Tungstênio/química , Solubilidade , Água/química
14.
ACS Nano ; 6(1): 629-40, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22136457

RESUMO

The metal oxide cluster α-AlW(11)O(39)(9-) (1), readily imaged by cryogenic transmission electron microscopy (cryo-TEM), is used as a diagnostic protecting anion to investigate the self-assembly of alkanethiolate monolayers on electrostatically stabilized gold nanoparticles in water. Monolayers of 1 on 13.8 ± 0.9 nm diameter gold nanoparticles are displaced from the gold surface by mercaptoundecacarboxylate, HS(CH(2))(10)CO(2)(-) (11-MU). During this process, no aggregation is observed by UV-vis spectroscopy, and the intermediate ligand-shell organizations of 1 in cryo-TEM images indicate the presence of growing hydrophobic domains, or "islands", of alkanethiolates. UV-vis spectroscopic "titrations", based on changes in the surface plasmon resonance upon exchange of 1 by thiol, reveal that the 330 ± 30 molecules of 1 initially present on each gold nanoparticle are eventually replaced by 2800 ± 30 molecules of 11-MU. UV-vis kinetic data for 11-MU-monolayer formation reveal a slow phase, followed by rapid self-assembly. The Johnson, Mehl, Avrami, and Kolmogorov model gives an Avrami parameter of 2.9, indicating continuous nucleation and two-dimensional island growth. During nucleation, incoming 11-MU ligands irreversibly displace 1 from the Au-NP surface via an associative mechanism, with k(nucleation) = (6.1 ± 0.4) × 10(2) M(-1) s(-1), and 19 ± 8 nuclei, each comprised of ca. 8 alkanethiolates, appear on the gold-nanoparticle surface before rapid growth becomes kinetically dominant. Island growth is also first-order in [11-MU], and its larger rate constant, k(growth), (2.3 ± 0.2) × 10(4) M(-1) s(-1), is consistent with destabilization of molecules of 1 at the boundaries between the hydrophobic (alkanethiolate) and the electrostatically stabilized (inorganic) domains.


Assuntos
Alcanos/química , Cristalização/métodos , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Sulfidrila/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
15.
J Am Chem Soc ; 131(47): 17412-22, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19902946

RESUMO

Cryogenic "trapping" was used to obtain the first TEM images of self-assembled monolayers of inorganic anions on a gold nanoparticle. This unique structural information makes it possible to study the formation of a protecting-ligand shell at an unprecedented level of detail. The protecting ligands are polyoxometalates (POMs; alpha-X(n+)W(12)O(40)((8-n)-), X(n+) = Al(3+) and "2H(+)", and alpha-X(n+)W(11)O(39)((12-n)-), X(n+) = P(5+), Si(4+), and Al(3+)) with large negative charges for association with the gold surface and W atoms (Z = 74) for TEM imaging. The POM-anion shells were obtained by ligand exchange from citrate-protected 13.8 nm gold nanoparticles. Replacement of the organic (citrate) by inorganic (tungsten-oxide) ligand shells results in substantial changes in the surface plasmon resonance (SPR). By correlating cryo-TEM images with changes in the SPR, degrees of surface coverage were reliably quantified by UV-visible spectroscopy. Then, the kinetics and thermodynamics of ligand-shell formation were investigated by systematically varying POM structure and charge. Rates of POM association with the gold surface ("nucleation") are inhibited by the electric-potential barrier of the citrate-stabilized particles, while binding affinities increase linearly with the charges (from 5- to 9-) of structurally different POM anions, suggesting that no single orientation ("lattice matching") is required for monolayer self-assembly. Time-dependent cryo-TEM images reveal that monolayer growth occurs via "islands", a mechanism that points to cation-mediated attraction between bound POMs. Complete ligand shells comprised of 330 molecules of alpha-AlW(11)O(39)(9-) (1) possess small net charges (29e from zeta-potential measurements) and short Debye lengths (kappa(-1) = 1.0 nm), which indicate that approximately 99% of the 2970 K(+) counter cations lie within ca. 1.5 nm (approximately 3 hydrated K(+) ion diameters) from the outer surface of the POM shell. Energetic analysis of the 1.57 +/- 0.04 nm center-to-center distance between molecules of 1 further indicates that K(+) ions reside in the ca. 4.5 A spaces between the bound ligands. These findings reveal an important structural role for counter cations within POM ligand shells on gold nanoparticles, analogous to that for cations in the monolayer walls of hollow POM-macroanion vesicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...