Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 211: 113079, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35276197

RESUMO

Silver doped hydroxyapatite and titanium oxide nanocomposites have been obtained by sol-gel techniques with novel antimicrobial activities for biomedical applications. The synthesis of Ca10-X AgX (PO4)6(OH)2 along with titanium oxide nanoparticles with XAg = 0 (HAp/TiO2), 0.1, 0.25 and 0.5 (Ag:HAp/TiO2-NCS) was performed. The developed crystalline phase was characterized via X-ray diffraction (XRD), and the morphological features were executed via scanning and transmission electron microscopy (SEM/TEM). The HAp/TiO2 and silver doped HAp/TiO2 nanocomposites were spherical grains, with needle and flower-like structures. XRD examination revealed the crystalline phases of HAp/TiO2 and Ag-doped HAp/TiO2 nanocomposites. The crystallite size of HAp/TiO2 and Ag-doped HAp/TiO2 nanocomposites determined from the XRD pattern was ranged between 16 nm and 20 nm. The FTIR analysis confirms the presence of stretching and vibrational peaks for the presence of silver doped HAp/TiO2. The EDAX analysis showed the existence of major elements of HAp/TiO2 and Ag-HAp/TiO2 nanostructured composites. HAp/TiO2 and silver doped HAp/TiO2 were active against both Gram-positive and Gram-negative bacteria such as, E. coli (MTCC 443), S. typhi (MTCC 733), and S. aureus (MTCC 3160). The photocatalytic absorption spectrum implied an increased absorption rate of methylene blue by HAp/TiO2 and silver doped HAp/TiO2 nanocomposites. The photocatalytic activity revealed that 50% Ag doped HAp/TiO2 optimally improved photocatalytic activity.


Assuntos
Nanocompostos , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanocompostos/química , Prata/química , Staphylococcus aureus , Titânio/química
2.
J Microsc ; 243(3): 267-72, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21756251

RESUMO

Semiconducting silver selenide telluride (Ag2SeTe) thin films were prepared with different thicknesses onto glass substrates at room temperature using thermal evaporation technique. The structural properties were determined as a function of thickness by X-ray diffraction exhibiting no preferential orientation along any plane; however, the films are found to have peaks corresponding to mixed phase. The morphology of these films was studied using scanning electron microscope and atomic force microscopy respectively, and is reported. The morphological properties are found to be very sensitive to the thin film thickness. The composition of the films is also estimated using energy dispersive analysis using X-rays and are also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA