Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Physiol Educ ; 45(4): 702-708, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34498935

RESUMO

Patch-clamp electrophysiological recordings of neuronal activity require a large amount of space and equipment. The technique is difficult to master and not conducive to demonstration to more than a few medical students. Therefore, neurophysiological education is mostly limited to classroom-based pedagogies such as lectures. However, the demonstration of concepts such as changes in membrane potential and ion channel activity is best achieved with hands-on approaches. This article details an in silico activity suitable for large groups of medical students that demonstrates the key concepts in neurophysiology using the LabAXON simulation software. Learning activities in our practical include 1) measurements of voltage and time parameters of the neuronal action potential and its relationship to the Nernst potentials of Na+ and K+; 2) determination of the stimulus threshold to evoke action potentials; 3) demonstration of the refractory period of an action potential; and 4) voltage-clamp experiments to determine the current-voltage relationship of voltage-gated Na+ and K+ channels and the voltage dependence of, and recovery from, inactivation of voltage-gated Na+ channels. We emphasized the accuracy of quantitative measurements as well as the correct use of units. The level of difficulty of the activity can be altered through different multiple choice questions relating to material introduced in the associated lectures. This practical activity is suitable for different class sizes and is adaptable for delivery with online platforms. Student feedback showed that the students felt the activity helped them consolidate their understanding of the lecture material.


Assuntos
Neurofisiologia , Estudantes de Medicina , Potenciais de Ação , Humanos , Potenciais da Membrana , Sódio
2.
Adv Physiol Educ ; 45(4): 856-868, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473584

RESUMO

Practical demonstration of cardiomyocyte function requires substantial preparation, a source of freshly isolated animal hearts, and specialized equipment. Even where such resources are available, it is not conducive for demonstration to any more than a few students at a time. These approaches are also not consistent with the 3R principle (replacement, reduction, and refinement) of ethical use of animals. We present an implementation of the LabHEART software, developed by Donald Bers and Jose Puglisi, for medical students. Prior to the activity, students had lectures covering the physiological and pharmacological aspects of cardiac excitation-contraction (EC) coupling. We used this problem-based activity to help students consolidate their knowledge and to allow a hands-on approach to explore the key features of EC coupling. Students simulate and measure action potentials, intracellular calcium changes, and cardiomyocyte contraction. They also apply drugs that target ion channels (e.g., nifedipine or tetrodotoxin) or sympathetic input (using isoproterenol) and explore changes to EC coupling. Furthermore, by modifying the biophysical parameters of key ion channels involved in the electrical activity of the heart, students also explore the effect of channelopathies such as long QT syndromes. We describe approaches to implement this activity in a flipped classroom format, with recorded lecture materials provided ahead of the practical to facilitate active learning. We also describe our experiences implementing this activity online. The content and difficulty of the activity can be altered to suit individual courses and is also amenable to promote peer-driven learning.


Assuntos
Laboratórios , Estudantes de Medicina , Animais , Simulação por Computador , Computadores , Humanos , Aprendizagem Baseada em Problemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...