Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chemosphere ; 353: 141527, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401869

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent contaminants with documented harmful health effects. Despite increasing research, little attention has been given to studying PFAS contamination in low- and middle-income countries, including Samoa. Using data and biosamples collected through the Foafoaga o le Ola ("Beginning of Life") Study, which recruited a sample of mothers and infants from Samoa, we conducted an exploratory study to describe concentrations of 40 PFAS analytes in infant cord blood collected at birth (n = 66) and infant dried blood spots (DBS) collected at 4 months post-birth (n = 50). Of the 40 PFAS analytes tested, 19 were detected in cord blood, with 10 detected in >50% of samples (PFBA, PFPeA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFHxS, PFOS, and 9Cl-PF3ONS); and 12 analytes were detected in DBS, with 3 detected in >50% of samples (PFBA, PFHxS, and PFOS). PFAS concentrations were generally lower than those reported in existing literature, with the exception of PFHxS, which was detected at higher concentrations. In cord blood, we noted suggestive (p < 0.05) or significant (p < 0.006) associations between higher PFHxS and male sex; higher PFPeA and residence in Northwest 'Upolu (NWU) compared to the Apia Urban Area (AUA); lower PFUnA and 9Cl-PF3ONS and greater socioeconomic resources; lower PFOA and higher parity; higher PFDA and higher maternal age; and lower PFUnA, PFTrDA, and 9Cl-PF3ONS and higher maternal BMI. In DBS, we found suggestive (p < 0.05) or significant (p < 0.025) associations between lower PFBA and residence in NWU versus AUA; lower PFBA and PFHxS and higher maternal age; and higher PFBA and higher maternal BMI. Finally, we observed associations between nutrition source at 4 months and DBS PFBA and PFHxS, with formula- or mixed-fed infants having higher concentrations compared to exclusively breastfed infants. This study represents the first characterization of PFAS contamination in Samoa. Additional work in larger samples is needed to identify potentially modifiable determinants of PFAS concentrations, information that is critical for informing environmental and health policy measures.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Lactente , Feminino , Recém-Nascido , Humanos , Masculino , Fluorocarbonos/análise , Samoa
2.
medRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986966

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent contaminants with documented harmful health effects. Despite increasing research, little attention has been given to studying PFAS contamination in low- and middle-income countries, including Samoa, where there is more recent modernization and potential window to examine earlier stages of PFAS exposure and consequences. Using data and biosamples collected through the Foafoaga o le Ola ("Beginning of Life") Study, which recruited a sample of mothers and infants from Samoa, we conducted an exploratory study to describe concentrations of 40 PFAS analytes in infant cord blood collected at birth (n=66) and dried blood spots (DBS) collected at 4 months post-birth (n=50). Of the 40 PFAS analytes tested, 19 were detected in cord blood, with 11 detected in >10% of samples (PFBA, PFPeA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFHxS, PFOS, and 9Cl-PF3ONS); 12 analytes were detected in DBS, with 3 detected in >10% of samples (PFBA, PFHxS, and PFOS). PFAS concentrations were generally lower than those reported in existing literature, with the exception of PFHxS, which was detected at higher concentrations. In cord blood, we noted associations between higher PFHxS and male sex, higher PFPeA and residence in Northwest 'Upolu (NWU) compared to the Apia Urban Area (AUA), and lower PFUnA and 9Cl-PF3ONS with greater socioeconomic resources. In DBS, we found associations between higher PFBA and greater socioeconomic resources, and between lower PFBA and PFHxS and residence in NWU versus AUA. However, the latter association did not hold when controlling for socioeconomic resources. Finally, we observed associations between nutrition source at 4 months and DBS PFBA and PFHxS, with formula- or mixed-fed infants having higher concentrations compared to exclusively breastfed infants. This study presents the first evidence of PFAS contamination in Samoa. Additional work in larger samples is needed to identify potentially modifiable determinants of PFAS concentrations, information that is critical for informing environmental and health policy measures.

3.
Environ Sci Pollut Res Int ; 30(11): 30295-30307, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36434461

RESUMO

Catchment discretization plays a key role in constructing stormwater models. Traditional methods usually require aerial or topographic data to manually partition the catchment, but this approach is challenging in areas with poor data access. Here, we propose an alternative approach, by drawing Thiessen polygons around sewer nodes to construct a sewershed model. The utility of this approach is evaluated using the EPA's Storm Water Management Model (SWMM) to simulate pipe flow in a sewershed in the City of Pittsburgh. Parameter sensitivities and model uncertainties were explored via Monte Carlo simulations and a simple algorithm applied to calibrate the model. The calibrated model could reliably simulate pipe flow, with a Nash-Sutcliffe efficiency (NSE) of 0.82 when compared to measured flow. The potential influence of sewer data availability on model performance was tested as a function of the number of nodes used to build the model. No statistical differences were observed in model performance when randomly reducing the number of nodes used to build the model (up to 40%). Based on our analyses, the Thiessen polygon approach can be used to construct urban stormwater models and generate good pipe flow simulations even for sewer data limited scenarios.


Assuntos
Modelos Teóricos , Chuva , Movimentos da Água , Cidades , Algoritmos
4.
J Hazard Mater ; 443(Pt A): 130090, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36279653

RESUMO

As demand for sustainable marine aquaculture (mariculture) and marine food supply surges worldwide, there is a growing need for new tools to assess mariculture impacts on local ecosystems, including the cycling of toxic organic contaminants. With this in mind, we developed the Contaminant Fate in Aquaculture-Modified Ecosystems (CFAME) model. The current model was designed to explore the fate of mariculture-derived organic contaminants in the Marlborough Sounds, New Zealand, known for its Chinook salmon farming industry. Model evaluation indicated robust model design, with 80% of modeled concentrations falling within a factor of ten of measured ones for native biota. Model results showed that mariculture was a source of organic contaminants in the sediment even at the Marlborough Sounds regional level and in wild marine fishes with high trophic levels near the farm area. Future research attention should be directed toward measuring chemicals with low log KAW (<0) and high log KOW values (e.g., >3) in sediment, and chemicals with log KOW values of 3-9 in wild fish.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ecossistema , Aquicultura , Peixes , Cadeia Alimentar , Monitoramento Ambiental/métodos
5.
Environ Sci Technol ; 56(10): 6232-6242, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34608797

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of substances for which there are widespread concerns about their extreme persistence in combination with toxic effects. It has been argued that PFAS should only be employed in those uses that are necessary for health or safety or are critical for the functioning of society and where no alternatives are available ("essential-use concept"). Implementing the essential-use concept requires a sufficient understanding of the current uses of PFAS and of the availability, suitability, and hazardous properties of alternatives. To illustrate the information requirements under the essential-use concept, we investigate seven different PFAS uses, three in consumer products and four industrial applications. We investigate how much information is available on the types and functions of PFAS in these uses, how much information is available on alternatives, their performance and hazardous properties and, finally, whether this information is sufficient as a basis for deciding on the essentiality of a PFAS use. The results show (i) the uses of PFAS are highly diverse and information on alternatives is often limited or lacking; (ii) PFAS in consumer products often are relatively easy to replace; (iii) PFAS uses in industrial processes can be highly complex and a thorough evaluation of the technical function of each PFAS and of the suitability of alternatives is needed; (iv) more coordination among PFAS manufacturers, manufacturers of alternatives to PFAS, users of these materials, government authorities, and other stakeholders is needed to make the process of phasing out PFAS more transparent and coherent.


Assuntos
Fluorocarbonos
6.
Chem Res Toxicol ; 34(11): 2273-2286, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34662518

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a complex group of environmental contaminants, many having long environmental half-lives. As these compounds degrade, the changes in their structure can result in a substantial increase in mutagenicity compared to the parent compound. Over time, each individual PAH can potentially degrade into several thousand unique transformation products, creating a complex, constantly evolving set of intermediates. Microbial degradation is the primary mechanism of their transformation and ultimate removal from the environment, and this process can result in mutagenic activation similar to the metabolic activation that can occur in multicellular organisms. The diversity of the potential intermediate structures in PAH-contaminated environments renders hazard assessment difficult for both remediation professionals and regulators. A mixture of structural and energetic descriptors has proven effective in existing studies for classifying which PAH transformation products will be mutagenic. However, most existing studies of environmental PAH mutagens primarily focus on nitrogenated derivatives, which are prevalent in the atmosphere and not as relevant in soil. Additionally, PAH products commonly found in the environment can range from as large as five rings to as small as a single ring, requiring a broadly inclusive methodology to comprehensively evaluate mutagenic potential. We developed a combination of supervised and unsupervised machine learning methods to predict environmentally induced PAH mutagenicity with improved performance over currently available tools. K-means clustering with principal component analysis allows us to identify molecular clusters that we hypothesize to have similar mechanisms of action. Recursive feature elimination identifies the most influential descriptors. The cluster-specific regression outperforms available classifiers in predicting direct-acting mutagens resulting from the microbial biodegradation of PAHs and provides direction for future studies evaluating the environmental hazards resulting from PAH biodegradation.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bases de Dados Factuais , Modelos Logísticos , Estrutura Molecular , Mutagênese , Testes de Mutagenicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Análise de Componente Principal
7.
Chem Res Toxicol ; 34(11): 2298-2308, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34705448

RESUMO

Physiologically based pharmacokinetic (PBPK) modeling is a powerful technique to inform risk assessment of xenobiotic substances such as perfluorooctanoic acid (PFOA). In our previous study, a permeability-limited PBPK model was developed to simulate the toxicokinetics and tissue distribution of PFOA in male rats. However, due to limited information on some key model parameters (e.g., protein binding and active transport rates), the uncertainty of the permeability-limited PBPK model was quite high. To address this issue, a hierarchical Bayesian analysis with Markov chain Monte Carlo (MCMC) was applied to reduce the uncertainty of parameters and improve the performance of the PBPK model. With the optimized posterior parameters, the PBPK model was evaluated by comparing its prediction with experimental data from three different studies. The results show that the uncertainties of the posterior model parameters were reduced substantially. In addition, most of the PBPK model predictions were improved: with the posterior parameters, most of the predicted plasma toxicokinetics (e.g., half-life) and tissue distribution fell well within a factor of 2.0 of the experimental data. Finally, the Bayesian framework could provide insights into the molecular mechanisms driving PFOA toxicokinetics: PFOA-protein binding, membrane permeability, and active transport.


Assuntos
Caprilatos/farmacocinética , Fluorocarbonos/farmacocinética , Animais , Teorema de Bayes , Masculino , Permeabilidade , Ratos , Distribuição Tecidual
8.
Environ Sci Process Impacts ; 23(8): 1079-1087, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34190275

RESUMO

The essential-use concept is a tool that can guide the phase-out of per- and polyfluoroalkyl substances (PFAS) and potentially other substances of concern. This concept is a novel approach to chemicals management that determines whether using substances of concern, such as PFAS, is truly essential for a given functionality. To assess the essentiality of a particular use case, three considerations need to be addressed: (1) the function (chemical, end use and service) that the chemical provides in the use case, (2) whether the function is necessary for health and safety and critical for the functioning of society and (3) if the function is necessary, whether there are viable alternatives for the chemical for this particular use. A few illustrative examples of the three-step process are provided for use cases of PFAS. The essential-use concept takes chemicals management away from a substance-by-substance approach to a group approach. For PFAS and other substances of concern, it offers a more rapid pathway toward effective management or phase-out. Parts of the concept of essential use have already been widely applied in global treaties and international regulations and it has also been recently used by product manufacturers and retailers to phase out substances of concern from supply chains. Herein some of the common questions and misinterpretations regarding the practical application of the essential-use concept are reviewed, and answers and further clarifications are provided.


Assuntos
Fluorocarbonos , Humanos
9.
Environ Health ; 20(1): 63, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022907

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have been found to be associated with gestational diabetes mellitus (GDM) development, a maternal health disorder in pregnancy with negative effects that can extend beyond pregnancy. Studies that report on this association are difficult to summarize due to weak associations and wide confidence intervals. One way to advance this field is to sharpen the biologic theory on a causal pathway behind this association, and to measure it directly by way of molecular biomarkers. The aim of this review is to summarize the literature that supports a novel pathway between PFAS exposure and GDM development. Epidemiological studies demonstrate a clear association of biomarkers of thyroid hormones and glucose metabolism with GDM development. We report biologic plausibility and epidemiologic evidence that PFAS dysregulation of maternal thyroid hormones and thyrotropin (TSH) may disrupt glucose homeostasis, increasing the risk of GDM. Overall, epidemiological studies demonstrate that PFAS were positively associated with TSH and negatively with triiodothyronine (T3) and thyroxine (T4). PFAS were generally positively associated with glucose and insulin levels in pregnancy. We propose dysregulation of thyroid function and glucose metabolism may be a critical and missing component in the accurate estimation of PFAS on the risk of GDM.


Assuntos
Diabetes Gestacional/epidemiologia , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Fluorocarbonos/efeitos adversos , Biomarcadores/metabolismo , Diabetes Gestacional/metabolismo , Feminino , Glucose/metabolismo , Humanos , Gravidez , Risco , Hormônios Tireóideos/metabolismo
10.
Environ Sci Process Impacts ; 22(12): 2307-2312, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33230514

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all "non-essential" uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Água Potável/análise , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/análise
11.
Environ Sci Process Impacts ; 22(12): 2345-2373, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125022

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are of concern because of their high persistence (or that of their degradation products) and their impacts on human and environmental health that are known or can be deduced from some well-studied PFAS. Currently, many different PFAS (on the order of several thousands) are used in a wide range of applications, and there is no comprehensive source of information on the many individual substances and their functions in different applications. Here we provide a broad overview of many use categories where PFAS have been employed and for which function; we also specify which PFAS have been used and discuss the magnitude of the uses. Despite being non-exhaustive, our study clearly demonstrates that PFAS are used in almost all industry branches and many consumer products. In total, more than 200 use categories and subcategories are identified for more than 1400 individual PFAS. In addition to well-known categories such as textile impregnation, fire-fighting foam, and electroplating, the identified use categories also include many categories not described in the scientific literature, including PFAS in ammunition, climbing ropes, guitar strings, artificial turf, and soil remediation. We further discuss several use categories that may be prioritised for finding PFAS-free alternatives. Besides the detailed description of use categories, the present study also provides a list of the identified PFAS per use category, including their exact masses for future analytical studies aiming to identify additional PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Materiais de Construção , Fluorocarbonos/análise , Humanos , Solo , Têxteis , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 54(20): 12820-12828, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33043667

RESUMO

Fluoropolymers are a group of polymers within the class of per- and polyfluoroalkyl substances (PFAS). The objective of this analysis is to evaluate the evidence regarding the environmental and human health impacts of fluoropolymers throughout their life cycle(s). Production of some fluoropolymers is intimately linked to the use and emissions of legacy and novel PFAS as polymer processing aids. There are serious concerns regarding the toxicity and adverse effects of fluorinated processing aids on humans and the environment. A variety of other PFAS, including monomers and oligomers, are emitted during the production, processing, use, and end-of-life treatment of fluoropolymers. There are further concerns regarding the safe disposal of fluoropolymers and their associated products and articles at the end of their life cycle. While recycling and reuse of fluoropolymers is performed on some industrial waste, there are only limited options for their recycling from consumer articles. The evidence reviewed in this analysis does not find a scientific rationale for concluding that fluoropolymers are of low concern for environmental and human health. Given fluoropolymers' extreme persistence; emissions associated with their production, use, and disposal; and a high likelihood for human exposure to PFAS, their production and uses should be curtailed except in cases of essential uses.


Assuntos
Fluorocarbonos , Saúde Ambiental , Fluorocarbonos/análise , Humanos , Polietileno
13.
Environ Sci Technol ; 54(17): 10735-10744, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32692172

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a diverse group of environmental contaminants released during the combustion of organic materials and the production and utilization of fossil fuels. Once released, PAHs deposit in soil and water bodies where they are subjected to environmental transport and transformations. As they degrade, intermediate transformation products may play an important role in their environmental impact. However, studying the effects of these degradation products has proven challenging because of the complexity, transience, and low concentration of many intermediates. Herein, a novel integration of a pathway prediction system and network theory was developed and applied to a set of four PAHs to demonstrate a possible solution to this challenge. Network analysis techniques were employed to refine the thousands of potential outputs and elucidate compounds of interest. Using these tools, we determined correlations between PAH degradation network data and intermediate metabolite structures, gaining information about the chemical characteristics of compounds based on their placement within the degradation network. Upon applying our developed filtering algorithm, we are able to predict up to 48% of the most common transformation products identified in a comprehensive empirical literature review. Additionally, our integrated approach uncovers potential metabolites which connect those found by past empirical studies but are currently undetected, thereby filling in the gaps of information in PAH degradation pathways.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo
14.
Environ Sci Process Impacts ; 22(7): 1444-1460, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32495786

RESUMO

Grouping strategies are needed for per- and polyfluoroalkyl substances (PFAS), in part, because it would be time and resource intensive to test and evaluate the more than 4700 PFAS on the global market on a chemical-by-chemical basis. In this paper we review various grouping strategies that could be used to inform actions on these chemicals and outline the motivations, advantages and disadvantages for each. Grouping strategies are subdivided into (1) those based on the intrinsic properties of the PFAS (e.g. persistence, bioaccumulation potential, toxicity, mobility, molecular size) and (2) those that inform risk assessment through estimation of cumulative exposure and/or effects. The most precautionary grouping approach of those reviewed within this article suggests phasing out PFAS based on their high persistence alone (the so-called "P-sufficient" approach). The least precautionary grouping approach reviewed advocates only grouping PFAS for risk assessment that have the same toxicological effects, modes and mechanisms of action, and elimination kinetics, which would need to be well documented across different PFAS. It is recognised that, given jurisdictional differences in chemical assessment philosophies and methodologies, no one strategy will be generally acceptable. The guiding question we apply to the reviewed grouping strategies is: grouping for what purpose? The motivation behind the grouping (e.g. determining use in products vs. setting guideline levels for contaminated environments) may lead to different grouping decisions. This assessment provides the necessary context for grouping strategies such that they can be adopted as they are, or built on further, to protect human and environmental health from potential PFAS-related effects.


Assuntos
Saúde Ambiental , Fluorocarbonos , Bioacumulação , Humanos , Medição de Risco
15.
Environ Sci Technol ; 54(9): 5676-5686, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249562

RESUMO

More than 1000 per- and polyfluoroalkyl substances (PFASs) have been discovered by nontarget analysis (NTA), but their prioritization for health concerns is challenging. We developed a method by incorporating size-exclusion column co-elution (SECC) and NTA, to screen PFASs binding to human liver fatty acid binding protein (hL-FABP). Of 74 PFASs assessed, 20 were identified as hL-FABP ligands in which eight of them have high binding affinities. Increased PFAS binding affinities correlate with stronger responses in electrospray ionization (ESI-) and longer retention times on a C18 column. This is well explained by a mechanistic model, which revealed that both polar and hydrophobic interactions are crucial for binding affinities. Encouraged by this, we then developed an SECC method to identify hL-FABP ligands, and all eight high-affinity ligands were selectively captured from 74 PFASs. The method was further applied to an aqueous film-forming foam (AFFF) product in which 31 new hL-FABP ligands were identified. Suspect and nontargeted screening revealed these ligands as analogues of perfluorosulfonic acids and homologues of alkyl ether sulfates (C8- and C10/EOn, C8H17(C2H4O)nSO4-, and C10H21(C2H4O)nSO4-). The SECC method was then applied to AFFF-contaminated surface waters. In addition to perfluorooctanesulfonic acid and perfluorohexanesulfonic acid, eight other AFFF chemicals were discovered as novel ligands, including four C14- and C15/EOn. This study implemented a high-throughput method to prioritize PFASs and revealed the existence of many previously unknown hL-FABP ligands.


Assuntos
Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Proteínas de Ligação a Ácido Graxo , Humanos , Água
16.
Environ Toxicol Chem ; 39(2): 437-449, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31652359

RESUMO

Perfluorooctane sulfonate (PFOS) is a member of the anthropogenic class of perfluorinated alkyl acids (PFAAs) and one of the most frequently detected PFAAs in water, humans, mammals, and fish around the world. The zebrafish (Danio rerio) is a small freshwater fish considered an appropriate vertebrate model for investigating the toxicity of compounds. Previous investigations showed tissue-specific bioaccumulation and alterations in the expression of fatty acid-binding proteins (fabps) in male and female zebrafish, potentially due to interactions between PFAA and fatty acid transporters. In addition, a number of neurological impacts have been reported as a result of human and animal exposure to PFAAs. Therefore, the present comprehensive study was designed to investigate whether PFOS exposure affects the expression of genes associated with fatty acid metabolism (fabp1a, fabp2, and fabp10a) in zebrafish liver, intestine, heart, and ovary and genes involved in the nervous system (acetylcholinesterase, brain-derived neurotrophic factor, choline acetyltransferase, histone deacetylase 6, and nerve growth factor) in brain and muscle. The results indicate alterations in expression of genes associated with fatty acid metabolism and neural function that vary with both exposure concentration and sex. In addition, our findings highlight that expression of these genes differs according to exposure duration. The present results extend the knowledge base on PFOS effects to other tissues less often studied than the liver. The findings of the present investigation provide a basis for future studies on the potential risks of PFOS as one of the most abundant PFAAs in the environment. Environ Toxicol Chem 2020;39:437-449. © 2019 SETAC.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Expressão Gênica/efeitos dos fármacos , Caracteres Sexuais , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Animais , Exposição Ambiental/análise , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Masculino , Fatores de Tempo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Environ Sci Technol ; 53(23): 13970-13980, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31661253

RESUMO

A recent OECD report estimated that more than 4000 per- and polyfluorinated alkyl substances (PFASs) have been produced and used in a broad range of industrial and consumer applications. However, little is known about the potential hazards (e.g., bioactivity, bioaccumulation, and toxicity) of most PFASs. Here, we built machine-learning-based quantitative structure-activity relationship (QSAR) models to predict the bioactivity of those PFASs. By examining a number of available molecular data sets, we constructed the first PFAS-specific database that contains the bioactivity information on 1012 PFASs for 26 bioassays. On the basis of the collected PFAS data set, we trained 5 different machine learning models that cover a variety of conventional models (e.g., random forest and multitask neural network (MNN)) and advanced graph-based models (e.g., graph convolutional network). Those models were evaluated based on the validation data set. Both MNN and graph-based models demonstrated the best performance. The average of the best area-under-the-curve score for each bioassay is 0.916. For predictions on the OECD list, most of the biologically active PFASs have perfluoroalkyl chain lengths less than 12 and are categorized into fluorotelomer-related compounds and perfluoroalkyl acids and their precursors.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Aprendizado de Máquina , Organização para a Cooperação e Desenvolvimento Econômico
18.
Environ Sci Process Impacts ; 21(11): 1803-1815, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31204421

RESUMO

Because of the extreme persistence of per- and polyfluoroalkyl substances (PFASs) and their associated risks, the Madrid Statement argues for stopping their use where they are deemed not essential or when safer alternatives exist. To determine when uses of PFASs have an essential function in modern society, and when they do not, is not an easy task. Here, we: (1) develop the concept of "essential use" based on an existing approach described in the Montreal Protocol, (2) apply the concept to various uses of PFASs to determine the feasibility of elimination or substitution of PFASs in each use category, and (3) outline the challenges for phasing out uses of PFASs in society. In brief, we developed three distinct categories to describe the different levels of essentiality of individual uses. A phase-out of many uses of PFASs can be implemented because they are not necessary for the betterment of society in terms of health and safety, or because functional alternatives are currently available that can be substituted into these products or applications. Some specific uses of PFASs would be considered essential because they provide for vital functions and are currently without established alternatives. However, this essentiality should not be considered as permanent; rather, constant efforts are needed to search for alternatives. We provide a description of several ongoing uses of PFASs and discuss whether these uses are essential or non-essential according to the three essentiality categories. It is not possible to describe each use case of PFASs in detail in this single article. For follow-up work, we suggest further refining the assessment of the use cases of PFASs covered here, where necessary, and expanding the application of this concept to all other uses of PFASs. The concept of essential use can also be applied in the management of other chemicals, or groups of chemicals, of concern.


Assuntos
Exposição Ambiental/prevenção & controle , Poluentes Ambientais/análise , Poluição Ambiental/prevenção & controle , Fluorocarbonos/análise , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Humanos
19.
Environ Sci Process Impacts ; 21(5): 904, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31041436

RESUMO

Correction for 'Why is high persistence alone a major cause of concern?' by Ian T. Cousins et al., Environ. Sci.: Processes Impacts, 2019, DOI: 10.1039/c8em00515j.

20.
Environ Sci Process Impacts ; 21(5): 781-792, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30973570

RESUMO

Persistence is a hazard criterion for chemicals enshrined in chemical regulation worldwide. In this paper, we argue that the higher the persistence of a chemical, the greater the emphasis that it should be given in chemicals assessment and decision making. We provide case studies for three classes of highly persistent chemicals (chlorofluorocarbons, polychlorinated biphenyls, and per- and polyfluoroalkyl substances) to exemplify problems unique to highly persistent chemicals, despite their otherwise diverse properties. Many well-known historical chemical pollution problems were the result of the release of highly persistent chemicals. Using evaluative modeling calculations, we demonstrate that if a chemical is highly persistent, its continuous release will lead to continuously increasing contamination irrespective of the chemical's physical-chemical properties. We argue that these increasing concentrations will result in increasing probabilities of the occurrence of known and unknown effects and that, once adverse effects are identified, it will take decades, centuries or even longer to reverse contamination and therefore effects. Based on our findings we propose that high persistence alone should be established as a sufficient basis for regulation of a chemical, which we term the "P-sufficient approach". We argue that regulation on high persistence alone is not over-precautionary given the historical and ongoing problems that persistent chemicals have caused. Regulation of highly persistent chemicals, for example by restriction of emissions, would not only be precautionary, but would serve to prevent poorly reversible future impacts.


Assuntos
Clorofluorcarbonetos/análise , Poluição Ambiental/análise , Substâncias Perigosas/análise , Modelos Teóricos , Bifenilos Policlorados/análise , Recuperação e Remediação Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA