Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(6): e38214, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22679491

RESUMO

Pandemic H1N1 influenza A (H1N1pdm) is currently a dominant circulating influenza strain worldwide. Severe cases of H1N1pdm infection are characterized by prolonged activation of the immune response, yet the specific role of inflammatory mediators in disease is poorly understood. The inflammatory cytokine IL-6 has been implicated in both seasonal and severe pandemic H1N1 influenza A (H1N1pdm) infection. Here, we investigated the role of IL-6 in severe H1N1pdm infection. We found IL-6 to be an important feature of the host response in both humans and mice infected with H1N1pdm. Elevated levels of IL-6 were associated with severe disease in patients hospitalized with H1N1pdm infection. Notably, serum IL-6 levels associated strongly with the requirement of critical care admission and were predictive of fatal outcome. In C57BL/6J, BALB/cJ, and B6129SF2/J mice, infection with A/Mexico/4108/2009 (H1N1pdm) consistently triggered severe disease and increased IL-6 levels in both lung and serum. Furthermore, in our lethal C57BL/6J mouse model of H1N1pdm infection, global gene expression analysis indicated a pronounced IL-6 associated inflammatory response. Subsequently, we examined disease and outcome in IL-6 deficient mice infected with H1N1pdm. No significant differences in survival, weight loss, viral load, or pathology were observed between IL-6 deficient and wild-type mice following infection. Taken together, our findings suggest IL-6 may be a potential disease severity biomarker, but may not be a suitable therapeutic target in cases of severe H1N1pdm infection due to our mouse data.


Assuntos
Biomarcadores/sangue , Vírus da Influenza A Subtipo H1N1/patogenicidade , Interleucina-6/sangue , Infecções por Orthomyxoviridae/sangue , Animais , Feminino , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pandemias , Carga Viral
2.
PLoS One ; 6(11): e27512, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110664

RESUMO

Influenza A and B infections are a worldwide health concern to both humans and animals. High genetic evolution rates of the influenza virus allow the constant emergence of new strains and cause illness variation. Since human influenza infections are often complicated by secondary factors such as age and underlying medical conditions, strain or subtype specific clinical features are difficult to assess. Here we infected ferrets with 13 currently circulating influenza strains (including strains of pandemic 2009 H1N1 [H1N1pdm] and seasonal A/H1N1, A/H3N2, and B viruses). The clinical parameters were measured daily for 14 days in stable environmental conditions to compare clinical characteristics. We found that H1N1pdm strains had a more severe physiological impact than all season strains where pandemic A/California/07/2009 was the most clinically pathogenic pandemic strain. The most serious illness among seasonal A/H1N1 and A/H3N2 groups was caused by A/Solomon Islands/03/2006 and A/Perth/16/2009, respectively. Among the 13 studied strains, B/Hubei-Wujiagang/158/2009 presented the mildest clinical symptoms. We have also discovered that disease severity (by clinical illness and histopathology) correlated with influenza specific antibody response but not viral replication in the upper respiratory tract. H1N1pdm induced the highest and most rapid antibody response followed by seasonal A/H3N2, seasonal A/H1N1 and seasonal influenza B (with B/Hubei-Wujiagang/158/2009 inducing the weakest response). Our study is the first to compare the clinical features of multiple circulating influenza strains in ferrets. These findings will help to characterize the clinical pictures of specific influenza strains as well as give insights into the development and administration of appropriate influenza therapeutics.


Assuntos
Furões , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza B/patogenicidade , Infecções por Orthomyxoviridae/epidemiologia , Pandemias , Estações do Ano , Animais , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Temperatura Corporal , Peso Corporal , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza B/imunologia , Vírus da Influenza B/fisiologia , Pulmão/patologia , Pulmão/virologia , Masculino , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/fisiopatologia , Infecções Respiratórias/virologia , Espirro , Especificidade da Espécie , Fatores de Tempo , Replicação Viral
3.
Immunity ; 34(5): 794-806, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21596591

RESUMO

Mammals harbor a dense commensal microbiota in the colon. Regulatory T (Treg) cells are known to limit microbe-triggered intestinal inflammation and the CD4+ T cell compartment is shaped by the presence of particular microbes or bacterial compounds. It is, however, difficult to distinguish whether these effects reflect true mutualistic immune adaptation to intestinal colonization or rather idiosyncratic immune responses. To investigate truly mutualistic CD4+ T cell adaptation, we used the altered Schaedler flora (ASF). Intestinal colonization resulted in activation and de novo generation of colonic Treg cells. Failure to activate Treg cells resulted in the induction of T helper 17 (Th17) and Th1 cell responses, which was reversed by wild-type Treg cells. Efficient Treg cell induction was also required to maintain intestinal homeostasis upon dextran sulfate sodium-mediated damage in the colon. Thus, microbiota colonization-induced Treg cell responses are a fundamental intrinsic mechanism to induce and maintain host-intestinal microbial T cell mutualism.


Assuntos
Imunidade Adaptativa , Colo/imunologia , Colo/microbiologia , Linfócitos T Reguladores/imunologia , Animais , Proliferação de Células , Colo/citologia , Homeostase , Imunidade nas Mucosas , Interleucina-10/imunologia , Ativação Linfocitária , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Linfócitos T Reguladores/citologia
4.
J Gen Virol ; 91(Pt 12): 2898-906, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20797971

RESUMO

The use of ribavirin in influenza treatment is a matter of debate. Due to adamantine- and oseltamivir-resistant strains of the current pandemic H1N1 (pdmH1N1) influenza viruses, the demand for alternative antiviral treatments has increased. This study demonstrated the potent antiviral effects of ribavirin in a mouse model of pdmH1N1 influenza infection (A/Mexico/4108/2009). It was found that treatment with 40 mg ribavirin kg⁻¹ day⁻¹ partially protected the animals if initiated immediately upon infection. Administration of similar concentrations on subsequent days or immediate therapy with lower doses efficiently delayed disease progression. Correlation studies showed a direct relationship between low viral titres in the lung during the early stages of infection with animal survival in ribavirin-treated animals. Reduced lung pathology in animals treated with ribavirin following infection also indicated the importance of immediate treatment. This study revealed the antiviral properties of ribavirin and these results justify comprehensive clinical studies for the use of ribavirin against influenza virus in future outbreaks.


Assuntos
Antivirais/administração & dosagem , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Ribavirina/administração & dosagem , Animais , Antivirais/farmacologia , Embrião de Galinha , Modelos Animais de Doenças , Progressão da Doença , Feminino , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Ribavirina/farmacologia , Análise de Sobrevida
5.
Virology ; 401(2): 257-65, 2010 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-20334888

RESUMO

Immune responses during infection with pandemic H1N1 2009 influenza A virus (2009-H1N1) are still poorly understood. Using an experimental infection model in ferrets, we examined the pathological features and characterized the host immune responses by using microarray analysis, during infection with 2009-H1N1 A/California/07/2009 and seasonal A/Brisbane/59/2007. Chemokines CCL2, CCL8, CXCL7 and CXCL10 along with the majority of interferon-stimulated genes were expressed early, correlated to lung pathology, and abruptly decreased expression on day 7 following infection of A/California/07/2009. Interestingly, the drop in innate immune gene expression was replaced by a significant increase of the adaptive immune genes for granzymes and immunoglobulins. Serum anti-influenza antibodies were first observed on day 7, commensurate with the viral clearance. We propose that lung pathology in humans occurs during the innate phase of host immunity and a delay or failure to switch to the adaptive phase may contribute to morbidity and mortality during severe 2009-H1N1 infections.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Animais , Anticorpos Antivirais/sangue , Citocinas/biossíntese , Furões , Perfilação da Expressão Gênica , Histocitoquímica , Imuno-Histoquímica , Pulmão/patologia , Masculino , Microscopia , Infecções por Orthomyxoviridae/virologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...