Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 16(5): 731-739, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33786777

RESUMO

PURPOSE: Surgical annotation promotes effective communication between medical personnel during surgical procedures. However, existing approaches to 2D annotations are mostly static with respect to a display. In this work, we propose a method to achieve 3D annotations that anchor rigidly and stably to target structures upon camera movement in a transnasal endoscopic surgery setting. METHODS: This is accomplished through intra-operative endoscope tracking and monocular depth estimation. A virtual endoscopic environment is utilized to train a supervised depth estimation network. An adversarial network transfers the style from the real endoscopic view to a synthetic-like view for input into the depth estimation network, wherein framewise depth can be obtained in real time. RESULTS: (1) Accuracy: Framewise depth was predicted from images captured from within a nasal airway phantom and compared with ground truth, achieving a SSIM value of 0.8310 ± 0.0655. (2) Stability: mean absolute error (MAE) between reference and predicted depth of a target point was 1.1330 ± 0.9957 mm. CONCLUSION: Both the accuracy and stability evaluations demonstrated the feasibility and practicality of our proposed method for achieving 3D annotations.


Assuntos
Endoscopia/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Cadáver , Calibragem , Humanos , Processamento de Imagem Assistida por Computador , Monitorização Intraoperatória , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X , Gravação em Vídeo
2.
Int J Comput Assist Radiol Surg ; 16(3): 375-386, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33484431

RESUMO

PURPOSE: Intensity-based image registration has been proven essential in many applications accredited to its unparalleled ability to resolve image misalignments. However, long registration time for image realignment prohibits its use in intra-operative navigation systems. There has been much work on accelerating the registration process by improving the algorithm's robustness, but the innate computation required by the registration algorithm has been unresolved. METHODS: Intensity-based registration methods involve operations with high arithmetic load and memory access demand, which supposes to be reduced by graphics processing units (GPUs). Although GPUs are widespread and affordable, there is a lack of open-source GPU implementations optimized for non-rigid image registration. This paper demonstrates performance-aware programming techniques, which involves systematic exploitation of GPU features, by implementing the diffeomorphic log-demons algorithm. RESULTS: By resolving the pinpointed computation bottlenecks on GPU, our implementation of diffeomorphic log-demons on Nvidia GTX Titan X GPU has achieved ~ 95 times speed-up compared to the CPU and registered a 1.3-M voxel image in 286 ms. Even for large 37-M voxel images, our implementation is able to register in 8.56 s, which attained ~ 258 times speed-up. Our solution involves effective employment of GPU computation units, memory, and data bandwidth to resolve computation bottlenecks. CONCLUSION: The computation bottlenecks in diffeomorphic log-demons are pinpointed, analyzed, and resolved using various GPU performance-aware programming techniques. The proposed fast computation on basic image operations not only enhances the computation of diffeomorphic log-demons, but is also potentially extended to speed up many other intensity-based approaches. Our implementation is open-source on GitHub at https://bit.ly/2PYZxQz .


Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Monitorização Intraoperatória/instrumentação , Algoritmos , Humanos , Monitorização Intraoperatória/métodos , Distribuição Normal , Linguagens de Programação , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...